当前位置: 移动技术网 > IT编程>开发语言>C/C++ > String类的研究

String类的研究

2018年10月30日  | 移动技术网IT编程  | 我要评论
public final class string implements java.io.serializable, comparable, charsequence {
public final class string
    implements java.io.serializable, comparable, charsequence
{
    /** the value is used for character storage. */
    private final char value[];

    /** the offset is the first index of the storage that is used. */
    private final int offset;

    /** the count is the number of characters in the string. */
    private final int count;
    /** cache the hash code for the string */
    private int hash; // default to 0

    /** use serialversionuid from jdk 1.0.2 for interoperability */
    private static final long serialversionuid = -6849794470754667710l;

    /**
     * class string is special cased within the serialization stream protocol.
     *
     * a string instance is written initially into an objectoutputstream in the
     * following format:
     *
     *      tc_string (utf string)
     * 
* the string is written by method dataoutput.writeutf. * a new handle is generated to refer to all future references to the * string instance within the stream. */ private static final objectstreamfield[] serialpersistentfields = new objectstreamfield[0]; /** * initializes a newly created {@code string} object so that it represents * an empty character sequence. note that use of this constructor is * unnecessary since strings are immutable. */ public string() { this.offset = 0; this.count = 0; this.value = new char[0]; } /** * initializes a newly created {@code string} object so that it represents * the same sequence of characters as the argument; in other words, the * newly created string is a copy of the argument string. unless an * explicit copy of {@code original} is needed, use of this constructor is * unnecessary since strings are immutable. * * @param original * a {@code string} */ public string(string original) { int size = original.count; char[] originalvalue = original.value; char[] v; if (originalvalue.length > size) { // the array representing the string is bigger than the new // string itself. perhaps this constructor is being called // in order to trim the baggage, so make a copy of the array. int off = original.offset; v = arrays.copyofrange(originalvalue, off, off+size); } else { // the array representing the string is the same // size as the string, so no point in making a copy. v = originalvalue; } this.offset = 0; this.count = size; this.value = v; } /** * allocates a new {@code string} so that it represents the sequence of * characters currently contained in the character array argument. the * contents of the character array are copied; subsequent modification of * the character array does not affect the newly created string. * * @param value * the initial value of the string */ public string(char value[]) { int size = value.length; this.offset = 0; this.count = size; this.value = arrays.copyof(value, size); } /** * allocates a new {@code string} that contains characters from a subarray * of the character array argument. the {@code offset} argument is the * index of the first character of the subarray and the {@code count} * argument specifies the length of the subarray. the contents of the * subarray are copied; subsequent modification of the character array does * not affect the newly created string. * * @param value * array that is the source of characters * * @param offset * the initial offset * * @param count * the length * * @throws indexoutofboundsexception * if the {@code offset} and {@code count} arguments index * characters outside the bounds of the {@code value} array */ public string(char value[], int offset, int count) { if (offset < 0) { throw new stringindexoutofboundsexception(offset); } if (count < 0) { throw new stringindexoutofboundsexception(count); } // note: offset or count might be near -1>>>1. if (offset > value.length - count) { throw new stringindexoutofboundsexception(offset + count); } this.offset = 0; this.count = count; this.value = arrays.copyofrange(value, offset, offset+count); } /** * allocates a new {@code string} that contains characters from a subarray * of the unicode code point array argument. the {@code offset} argument * is the index of the first code point of the subarray and the * {@code count} argument specifies the length of the subarray. the * contents of the subarray are converted to {@code char}s; subsequent * modification of the {@code int} array does not affect the newly created * string. * * @param codepoints * array that is the source of unicode code points * * @param offset * the initial offset * * @param count * the length * * @throws illegalargumentexception * if any invalid unicode code point is found in {@code * codepoints} * * @throws indexoutofboundsexception * if the {@code offset} and {@code count} arguments index * characters outside the bounds of the {@code codepoints} array * * @since 1.5 */ public string(int[] codepoints, int offset, int count) { if (offset < 0) { throw new stringindexoutofboundsexception(offset); } if (count < 0) { throw new stringindexoutofboundsexception(count); } // note: offset or count might be near -1>>>1. if (offset > codepoints.length - count) { throw new stringindexoutofboundsexception(offset + count); } int expansion = 0; int margin = 1; char[] v = new char[count + margin]; int x = offset; int j = 0; for (int i = 0; i < count; i++) { int c = codepoints[x++]; if (c < 0) { throw new illegalargumentexception(); } if (margin <= 0 && (j+1) >= v.length) { if (expansion == 0) { expansion = (((-margin + 1) * count) << 10) / i; expansion >>= 10; if (expansion <= 0) { expansion = 1; } } else { expansion *= 2; } int newlen = math.min(v.length+expansion, count*2); margin = (newlen - v.length) - (count - i); v = arrays.copyof(v, newlen); } if (c < character.min_supplementary_code_point) { v[j++] = (char) c; } else if (c <= character.max_code_point) { character.tosurrogates(c, v, j); j += 2; margin--; } else { throw new illegalargumentexception(); } } this.offset = 0; this.value = v; this.count = j; } /** * allocates a new {@code string} constructed from a subarray of an array * of 8-bit integer values. * *

the {@code offset} argument is the index of the first byte of the * subarray, and the {@code count} argument specifies the length of the * subarray. * *

each {@code byte} in the subarray is converted to a {@code char} as * specified in the method above. * * @deprecated this method does not properly convert bytes into characters. * as of jdk 1.1, the preferred way to do this is via the * {@code string} constructors that take a {@link * java.nio.charset.charset}, charset name, or that use the platform's * default charset. * * @param ascii * the bytes to be converted to characters * * @param hibyte * the top 8 bits of each 16-bit unicode code unit * * @param offset * the initial offset * @param count * the length * * @throws indexoutofboundsexception * if the {@code offset} or {@code count} argument is invalid * * @see #string(byte[], int) * @see #string(byte[], int, int, java.lang.string) * @see #string(byte[], int, int, java.nio.charset.charset) * @see #string(byte[], int, int) * @see #string(byte[], java.lang.string) * @see #string(byte[], java.nio.charset.charset) * @see #string(byte[]) */ @deprecated public string(byte ascii[], int hibyte, int offset, int count) { checkbounds(ascii, offset, count); char value[] = new char[count]; if (hibyte == 0) { for (int i = count ; i-- > 0 ;) { value[i] = (char) (ascii[i + offset] & 0xff); } } else { hibyte <<= 8; for (int i = count ; i-- > 0 ;) { value[i] = (char) (hibyte | (ascii[i + offset] & 0xff)); } } this.offset = 0; this.count = count; this.value = value; } /** * allocates a new {@code string} containing characters constructed from * an array of 8-bit integer values. each character cin the * resulting string is constructed from the corresponding component * b in the byte array such that: * *

     *     c == (char)(((hibyte & 0xff) << 8)
     *                         | (b & 0xff))
     * 
* * @deprecated this method does not properly convert bytes into * characters. as of jdk 1.1, the preferred way to do this is via the * {@code string} constructors that take a {@link * java.nio.charset.charset}, charset name, or that use the platform's * default charset. * * @param ascii * the bytes to be converted to characters * * @param hibyte * the top 8 bits of each 16-bit unicode code unit * * @see #string(byte[], int, int, java.lang.string) * @see #string(byte[], int, int, java.nio.charset.charset) * @see #string(byte[], int, int) * @see #string(byte[], java.lang.string) * @see #string(byte[], java.nio.charset.charset) * @see #string(byte[]) */ @deprecated public string(byte ascii[], int hibyte) { this(ascii, hibyte, 0, ascii.length); } /* common private utility method used to bounds check the byte array * and requested offset & length values used by the string(byte[],..) * constructors. */ private static void checkbounds(byte[] bytes, int offset, int length) { if (length < 0) throw new stringindexoutofboundsexception(length); if (offset < 0) throw new stringindexoutofboundsexception(offset); if (offset > bytes.length - length) throw new stringindexoutofboundsexception(offset + length); } /** * constructs a new {@code string} by decoding the specified subarray of * bytes using the specified charset. the length of the new {@code string} * is a function of the charset, and hence may not be equal to the length * of the subarray. * *

the behavior of this constructor when the given bytes are not valid * in the given charset is unspecified. the {@link * java.nio.charset.charsetdecoder} class should be used when more control * over the decoding process is required. * * @param bytes * the bytes to be decoded into characters * * @param offset * the index of the first byte to decode * * @param length * the number of bytes to decode * @param charsetname * the name of a supported {@linkplain java.nio.charset.charset * charset} * * @throws unsupportedencodingexception * if the named charset is not supported * * @throws indexoutofboundsexception * if the {@code offset} and {@code length} arguments index * characters outside the bounds of the {@code bytes} array * * @since jdk1.1 */ public string(byte bytes[], int offset, int length, string charsetname) throws unsupportedencodingexception { if (charsetname == null) throw new nullpointerexception("charsetname"); checkbounds(bytes, offset, length); char[] v = stringcoding.decode(charsetname, bytes, offset, length); this.offset = 0; this.count = v.length; this.value = v; } /** * constructs a new {@code string} by decoding the specified subarray of * bytes using the specified {@linkplain java.nio.charset.charset charset}. * the length of the new {@code string} is a function of the charset, and * hence may not be equal to the length of the subarray. * *

this method always replaces malformed-input and unmappable-character * sequences with this charset's default replacement string. the {@link * java.nio.charset.charsetdecoder} class should be used when more control * over the decoding process is required. * * @param bytes * the bytes to be decoded into characters * * @param offset * the index of the first byte to decode * * @param length * the number of bytes to decode * * @param charset * the {@linkplain java.nio.charset.charset charset} to be used to * decode the {@code bytes} * * @throws indexoutofboundsexception * if the {@code offset} and {@code length} arguments index * characters outside the bounds of the {@code bytes} array * * @since 1.6 */ public string(byte bytes[], int offset, int length, charset charset) { if (charset == null) throw new nullpointerexception("charset"); checkbounds(bytes, offset, length); char[] v = stringcoding.decode(charset, bytes, offset, length); this.offset = 0; this.count = v.length; this.value = v; } /** * constructs a new {@code string} by decoding the specified array of bytes * using the specified {@linkplain java.nio.charset.charset charset}. the * length of the new {@code string} is a function of the charset, and hence * may not be equal to the length of the byte array. * *

the behavior of this constructor when the given bytes are not valid * in the given charset is unspecified. the {@link * java.nio.charset.charsetdecoder} class should be used when more control * over the decoding process is required. * * @param bytes * the bytes to be decoded into characters * * @param charsetname * the name of a supported {@linkplain java.nio.charset.charset * charset} * * @throws unsupportedencodingexception * if the named charset is not supported * * @since jdk1.1 */ public string(byte bytes[], string charsetname) throws unsupportedencodingexception { this(bytes, 0, bytes.length, charsetname); } /** * constructs a new {@code string} by decoding the specified array of * bytes using the specified {@linkplain java.nio.charset.charset charset}. * the length of the new {@code string} is a function of the charset, and * hence may not be equal to the length of the byte array. * *

this method always replaces malformed-input and unmappable-character * sequences with this charset's default replacement string. the {@link * java.nio.charset.charsetdecoder} class should be used when more control * over the decoding process is required. * * @param bytes * the bytes to be decoded into characters * * @param charset * the {@linkplain java.nio.charset.charset charset} to be used to * decode the {@code bytes} * * @since 1.6 */ public string(byte bytes[], charset charset) { this(bytes, 0, bytes.length, charset); } /** * constructs a new {@code string} by decoding the specified subarray of * bytes using the platform's default charset. the length of the new * {@code string} is a function of the charset, and hence may not be equal * to the length of the subarray. * *

the behavior of this constructor when the given bytes are not valid * in the default charset is unspecified. the {@link * java.nio.charset.charsetdecoder} class should be used when more control * over the decoding process is required. * * @param bytes * the bytes to be decoded into characters * * @param offset * the index of the first byte to decode * * @param length * the number of bytes to decode * * @throws indexoutofboundsexception * if the {@code offset} and the {@code length} arguments index * characters outside the bounds of the {@code bytes} array * * @since jdk1.1 */ public string(byte bytes[], int offset, int length) { checkbounds(bytes, offset, length); char[] v = stringcoding.decode(bytes, offset, length); this.offset = 0; this.count = v.length; this.value = v; } /** * constructs a new {@code string} by decoding the specified array of bytes * using the platform's default charset. the length of the new {@code * string} is a function of the charset, and hence may not be equal to the * length of the byte array. * *

the behavior of this constructor when the given bytes are not valid * in the default charset is unspecified. the {@link * java.nio.charset.charsetdecoder} class should be used when more control * over the decoding process is required. * * @param bytes * the bytes to be decoded into characters * * @since jdk1.1 */ public string(byte bytes[]) { this(bytes, 0, bytes.length); } /** * allocates a new string that contains the sequence of characters * currently contained in the string buffer argument. the contents of the * string buffer are copied; subsequent modification of the string buffer * does not affect the newly created string. * * @param buffer * a {@code stringbuffer} */ public string(stringbuffer buffer) { string result = buffer.tostring(); this.value = result.value; this.count = result.count; this.offset = result.offset; } /** * allocates a new string that contains the sequence of characters * currently contained in the string builder argument. the contents of the * string builder are copied; subsequent modification of the string builder * does not affect the newly created string. * *

this constructor is provided to ease migration to {@code * stringbuilder}. obtaining a string from a string builder via the {@code * tostring} method is likely to run faster and is generally preferred. * * @param builder * a {@code stringbuilder} * * @since 1.5 */ public string(stringbuilder builder) { string result = builder.tostring(); this.value = result.value; this.count = result.count; this.offset = result.offset; } // package private constructor which shares value array for speed. string(int offset, int count, char value[]) { this.value = value; this.offset = offset; this.count = count; } /** * returns the length of this string. * the length is equal to the number of in the string. * * @return the length of the sequence of characters represented by this * object. */ public int length() { return count; } /** * returns true if, and only if, {@link #length()} is 0. * * @return true if {@link #length()} is 0, otherwise * false * * @since 1.6 */ public boolean isempty() { return count == 0; } /** * returns the char value at the * specified index. an index ranges from 0 to * length() - 1. the first char value of the sequence * is at index 0, the next at index 1, * and so on, as for array indexing. * *

if the char value specified by the index is a * , the surrogate * value is returned. * * @param index the index of the char value. * @return the char value at the specified index of this string. * the first char value is at index 0. * @exception indexoutofboundsexception if the index * argument is negative or not less than the length of this * string. */ public char charat(int index) { if ((index < 0) || (index >= count)) { throw new stringindexoutofboundsexception(index); } return value[index + offset]; } /** * returns the character (unicode code point) at the specified * index. the index refers to char values * (unicode code units) and ranges from 0 to * {@link #length()} - 1. * *

if the char value specified at the given index * is in the high-surrogate range, the following index is less * than the length of this string, and the * char value at the following index is in the * low-surrogate range, then the supplementary code point * corresponding to this surrogate pair is returned. otherwise, * the char value at the given index is returned. * * @param index the index to the char values * @return the code point value of the character at the * index * @exception indexoutofboundsexception if the index * argument is negative or not less than the length of this * string. * @since 1.5 */ public int codepointat(int index) { if ((index < 0) || (index >= count)) { throw new stringindexoutofboundsexception(index); } return character.codepointatimpl(value, offset + index, offset + count); } /** * returns the character (unicode code point) before the specified * index. the index refers to char values * (unicode code units) and ranges from 1 to {@link * charsequence#length() length}. * *

if the char value at (index - 1) * is in the low-surrogate range, (index - 2) is not * negative, and the char value at (index - * 2) is in the high-surrogate range, then the * supplementary code point value of the surrogate pair is * returned. if the char value at index - * 1 is an unpaired low-surrogate or a high-surrogate, the * surrogate value is returned. * * @param index the index following the code point that should be returned * @return the unicode code point value before the given index. * @exception indexoutofboundsexception if the index * argument is less than 1 or greater than the length * of this string. * @since 1.5 */ public int codepointbefore(int index) { int i = index - 1; if ((i < 0) || (i >= count)) { throw new stringindexoutofboundsexception(index); } return character.codepointbeforeimpl(value, offset + index, offset); } /** * returns the number of unicode code points in the specified text * range of this string. the text range begins at the * specified beginindex and extends to the * char at index endindex - 1. thus the * length (in chars) of the text range is * endindex-beginindex. unpaired surrogates within * the text range count as one code point each. * * @param beginindex the index to the first char of * the text range. * @param endindex the index after the last char of * the text range. * @return the number of unicode code points in the specified text * range * @exception indexoutofboundsexception if the * beginindex is negative, or endindex * is larger than the length of this string, or * beginindex is larger than endindex. * @since 1.5 */ public int codepointcount(int beginindex, int endindex) { if (beginindex < 0 || endindex > count || beginindex > endindex) { throw new indexoutofboundsexception(); } return character.codepointcountimpl(value, offset+beginindex, endindex-beginindex); } /** * returns the index within this string that is * offset from the given index by * codepointoffset code points. unpaired surrogates * within the text range given by index and * codepointoffset count as one code point each. * * @param index the index to be offset * @param codepointoffset the offset in code points * @return the index within this string * @exception indexoutofboundsexception if index * is negative or larger then the length of this * string, or if codepointoffset is positive * and the substring starting with index has fewer * than codepointoffset code points, * or if codepointoffset is negative and the substring * before index has fewer than the absolute value * of codepointoffset code points. * @since 1.5 */ public int offsetbycodepoints(int index, int codepointoffset) { if (index < 0 || index > count) { throw new indexoutofboundsexception(); } return character.offsetbycodepointsimpl(value, offset, count, offset+index, codepointoffset) - offset; } /** * copy characters from this string into dst starting at dstbegin. * this method doesn't perform any range checking. */ void getchars(char dst[], int dstbegin) { system.arraycopy(value, offset, dst, dstbegin, count); } /** * copies characters from this string into the destination character * array. *

* the first character to be copied is at index srcbegin; * the last character to be copied is at index srcend-1 * (thus the total number of characters to be copied is * srcend-srcbegin). the characters are copied into the * subarray of dst starting at index dstbegin * and ending at index: *

 

     *     dstbegin + (srcend-srcbegin) - 1
     * 
* * @param srcbegin index of the first character in the string * to copy. * @param srcend index after the last character in the string * to copy. * @param dst the destination array. * @param dstbegin the start offset in the destination array. * @exception indexoutofboundsexception if any of the following * is true: *
  • srcbegin is negative. *
  • srcbegin is greater than srcend *
  • srcend is greater than the length of this * string *
  • dstbegin is negative *
  • dstbegin+(srcend-srcbegin) is larger than * dst.length
*/ public void getchars(int srcbegin, int srcend, char dst[], int dstbegin) { if (srcbegin < 0) { throw new stringindexoutofboundsexception(srcbegin); } if (srcend > count) { throw new stringindexoutofboundsexception(srcend); } if (srcbegin > srcend) { throw new stringindexoutofboundsexception(srcend - srcbegin); } system.arraycopy(value, offset + srcbegin, dst, dstbegin, srcend - srcbegin); } /** * copies characters from this string into the destination byte array. each * byte receives the 8 low-order bits of the corresponding character. the * eight high-order bits of each character are not copied and do not * participate in the transfer in any way. * *

the first character to be copied is at index {@code srcbegin}; the * last character to be copied is at index {@code srcend-1}. the total * number of characters to be copied is {@code srcend-srcbegin}. the * characters, converted to bytes, are copied into the subarray of {@code * dst} starting at index {@code dstbegin} and ending at index: * *

     *     dstbegin + (srcend-srcbegin) - 1
     * 
* * @deprecated this method does not properly convert characters into * bytes. as of jdk 1.1, the preferred way to do this is via the * {@link #getbytes()} method, which uses the platform's default charset. * * @param srcbegin * index of the first character in the string to copy * * @param srcend * index after the last character in the string to copy * * @param dst * the destination array * * @param dstbegin * the start offset in the destination array * * @throws indexoutofboundsexception * if any of the following is true: *
  • *
  • {@code srcbegin} is negative *
  • {@code srcbegin} is greater than {@code srcend} *
  • {@code srcend} is greater than the length of this string *
  • {@code dstbegin} is negative *
  • {@code dstbegin+(srcend-srcbegin)} is larger than {@code * dst.length} *
*/ @deprecated public void getbytes(int srcbegin, int srcend, byte dst[], int dstbegin) { if (srcbegin < 0) { throw new stringindexoutofboundsexception(srcbegin); } if (srcend > count) { throw new stringindexoutofboundsexception(srcend); } if (srcbegin > srcend) { throw new stringindexoutofboundsexception(srcend - srcbegin); } int j = dstbegin; int n = offset + srcend; int i = offset + srcbegin; char[] val = value; /* avoid getfield opcode */ while (i < n) { dst[j++] = (byte)val[i++]; } } /** * encodes this {@code string} into a sequence of bytes using the named * charset, storing the result into a new byte array. * *

the behavior of this method when this string cannot be encoded in * the given charset is unspecified. the {@link * java.nio.charset.charsetencoder} class should be used when more control * over the encoding process is required. * * @param charsetname * the name of a supported {@linkplain java.nio.charset.charset * charset} * * @return the resultant byte array * * @throws unsupportedencodingexception * if the named charset is not supported * * @since jdk1.1 */ public byte[] getbytes(string charsetname) throws unsupportedencodingexception { if (charsetname == null) throw new nullpointerexception(); return stringcoding.encode(charsetname, value, offset, count); } /** * encodes this {@code string} into a sequence of bytes using the given * {@linkplain java.nio.charset.charset charset}, storing the result into a * new byte array. * *

this method always replaces malformed-input and unmappable-character * sequences with this charset's default replacement byte array. the * {@link java.nio.charset.charsetencoder} class should be used when more * control over the encoding process is required. * * @param charset * the {@linkplain java.nio.charset.charset} to be used to encode * the {@code string} * * @return the resultant byte array * * @since 1.6 */ public byte[] getbytes(charset charset) { if (charset == null) throw new nullpointerexception(); return stringcoding.encode(charset, value, offset, count); } /** * encodes this {@code string} into a sequence of bytes using the * platform's default charset, storing the result into a new byte array. * *

the behavior of this method when this string cannot be encoded in * the default charset is unspecified. the {@link * java.nio.charset.charsetencoder} class should be used when more control * over the encoding process is required. * * @return the resultant byte array * * @since jdk1.1 */ public byte[] getbytes() { return stringcoding.encode(value, offset, count); } /** * compares this string to the specified object. the result is {@code * true} if and only if the argument is not {@code null} and is a {@code * string} object that represents the same sequence of characters as this * object. * * @param anobject * the object to compare this {@code string} against * * @return {@code true} if the given object represents a {@code string} * equivalent to this string, {@code false} otherwise * * @see #compareto(string) * @see #equalsignorecase(string) */ public boolean equals(object anobject) { if (this == anobject) { return true; } if (anobject instanceof string) { string anotherstring = (string)anobject; int n = count; if (n == anotherstring.count) { char v1[] = value; char v2[] = anotherstring.value; int i = offset; int j = anotherstring.offset; while (n-- != 0) { if (v1[i++] != v2[j++]) return false; } return true; } } return false; } /** * compares this string to the specified {@code stringbuffer}. the result * is {@code true} if and only if this {@code string} represents the same * sequence of characters as the specified {@code stringbuffer}. * * @param sb * the {@code stringbuffer} to compare this {@code string} against * * @return {@code true} if this {@code string} represents the same * sequence of characters as the specified {@code stringbuffer}, * {@code false} otherwise * * @since 1.4 */ public boolean contentequals(stringbuffer sb) { synchronized(sb) { return contentequals((charsequence)sb); } } /** * compares this string to the specified {@code charsequence}. the result * is {@code true} if and only if this {@code string} represents the same * sequence of char values as the specified sequence. * * @param cs * the sequence to compare this {@code string} against * * @return {@code true} if this {@code string} represents the same * sequence of char values as the specified sequence, {@code * false} otherwise * * @since 1.5 */ public boolean contentequals(charsequence cs) { if (count != cs.length()) return false; // argument is a stringbuffer, stringbuilder if (cs instanceof abstractstringbuilder) { char v1[] = value; char v2[] = ((abstractstringbuilder)cs).getvalue(); int i = offset; int j = 0; int n = count; while (n-- != 0) { if (v1[i++] != v2[j++]) return false; } } // argument is a string if (cs.equals(this)) return true; // argument is a generic charsequence char v1[] = value; int i = offset; int j = 0; int n = count; while (n-- != 0) { if (v1[i++] != cs.charat(j++)) return false; } return true; } /** * compares this {@code string} to another {@code string}, ignoring case * considerations. two strings are considered equal ignoring case if they * are of the same length and corresponding characters in the two strings * are equal ignoring case. * *

two characters {@code c1} and {@code c2} are considered the same * ignoring case if at least one of the following is true: *

  • *
  • the two characters are the same (as compared by the * {@code ==} operator) *
  • applying the method {@link * java.lang.character#touppercase(char)} to each character * produces the same result *
  • applying the method {@link * java.lang.character#tolowercase(char)} to each character * produces the same result *
* * @param anotherstring * the {@code string} to compare this {@code string} against * * @return {@code true} if the argument is not {@code null} and it * represents an equivalent {@code string} ignoring case; {@code * false} otherwise * * @see #equals(object) */ public boolean equalsignorecase(string anotherstring) { return (this == anotherstring) ? true : (anotherstring != null) && (anotherstring.count == count) && regionmatches(true, 0, anotherstring, 0, count); } /** * compares two strings lexicographically. * the comparison is based on the unicode value of each character in * the strings. the character sequence represented by this * string object is compared lexicographically to the * character sequence represented by the argument string. the result is * a negative integer if this string object * lexicographically precedes the argument string. the result is a * positive integer if this string object lexicographically * follows the argument string. the result is zero if the strings * are equal; compareto returns 0 exactly when * the {@link #equals(object)} method would return true. *

* this is the definition of lexicographic ordering. if two strings are * different, then either they have different characters at some index * that is a valid index for both strings, or their lengths are different, * or both. if they have different characters at one or more index * positions, let k be the smallest such index; then the string * whose character at position k has the smaller value, as * determined by using the < operator, lexicographically precedes the * other string. in this case, compareto returns the * difference of the two character values at position k in * the two string -- that is, the value: *

     * this.charat(k)-anotherstring.charat(k)
     * 
* if there is no index position at which they differ, then the shorter * string lexicographically precedes the longer string. in this case, * compareto returns the difference of the lengths of the * strings -- that is, the value: *
     * this.length()-anotherstring.length()
     * 
* * @param anotherstring the string to be compared. * @return the value 0 if the argument string is equal to * this string; a value less than 0 if this string * is lexicographically less than the string argument; and a * value greater than 0 if this string is * lexicographically greater than the string argument. */ public int compareto(string anotherstring) { int len1 = count; int len2 = anotherstring.count; int n = math.min(len1, len2); char v1[] = value; char v2[] = anotherstring.value; int i = offset; int j = anotherstring.offset; if (i == j) { int k = i; int lim = n + i; while (k < lim) { char c1 = v1[k]; char c2 = v2[k]; if (c1 != c2) { return c1 - c2; } k++; } } else { while (n-- != 0) { char c1 = v1[i++]; char c2 = v2[j++]; if (c1 != c2) { return c1 - c2; } } } return len1 - len2; } /** * a comparator that orders string objects as by * comparetoignorecase. this comparator is serializable. *

* note that this comparator does not take locale into account, * and will result in an unsatisfactory ordering for certain locales. * the java.text package provides collators to allow * locale-sensitive ordering. * * @see java.text.collator#compare(string, string) * @since 1.2 */ public static final comparator case_insensitive_order = new caseinsensitivecomparator(); private static class caseinsensitivecomparator implements comparator, java.io.serializable { // use serialversionuid from jdk 1.2.2 for interoperability private static final long serialversionuid = 8575799808933029326l; public int compare(string s1, string s2) { int n1=s1.length(), n2=s2.length(); for (int i1=0, i2=0; i1compareto with normalized versions of the strings * where case differences have been eliminated by calling * character.tolowercase(character.touppercase(character)) on * each character. *

* note that this method does not take locale into account, * and will result in an unsatisfactory ordering for certain locales. * the java.text package provides collators to allow * locale-sensitive ordering. * * @param str the string to be compared. * @return a negative integer, zero, or a positive integer as the * specified string is greater than, equal to, or less * than this string, ignoring case considerations. * @see java.text.collator#compare(string, string) * @since 1.2 */ public int comparetoignorecase(string str) { return case_insensitive_order.compare(this, str); } /** * tests if two string regions are equal. *

* a substring of this string object is compared to a substring * of the argument other. the result is true if these substrings * represent identical character sequences. the substring of this * string object to be compared begins at index toffset * and has length len. the substring of other to be compared * begins at index ooffset and has length len. the * result is false if and only if at least one of the following * is true: *

  • toffset is negative. *
  • ooffset is negative. *
  • toffset+len is greater than the length of this * string object. *
  • ooffset+len is greater than the length of the other * argument. *
  • there is some nonnegative integer k less than len * such that: * this.charat(toffset+k) != other.charat(ooffset+k) *
* * @param toffset the starting offset of the subregion in this string. * @param other the string argument. * @param ooffset the starting offset of the subregion in the string * argument. * @param len the number of characters to compare. * @return true if the specified subregion of this string * exactly matches the specified subregion of the string argument; * false otherwise. */ public boolean regionmatches(int toffset, string other, int ooffset, int len) { char ta[] = value; int to = offset + toffset; char pa[] = other.value; int po = other.offset + ooffset; // note: toffset, ooffset, or len might be near -1>>>1. if ((ooffset < 0) || (toffset < 0) || (toffset > (long)count - len) || (ooffset > (long)other.count - len)) { return false; } while (len-- > 0) { if (ta[to++] != pa[po++]) { return false; } } return true; } /** * tests if two string regions are equal. *

* a substring of this string object is compared to a substring * of the argument other. the result is true if these * substrings represent character sequences that are the same, ignoring * case if and only if ignorecase is true. the substring of * this string object to be compared begins at index * toffset and has length len. the substring of * other to be compared begins at index ooffset and * has length len. the result is false if and only if * at least one of the following is true: *

  • toffset is negative. *
  • ooffset is negative. *
  • toffset+len is greater than the length of this * string object. *
  • ooffset+len is greater than the length of the other * argument. *
  • ignorecase is false and there is some nonnegative * integer k less than len such that: *
         * this.charat(toffset+k) != other.charat(ooffset+k)
         * 
    *
  • ignorecase is true and there is some nonnegative * integer k less than len such that: *
         * character.tolowercase(this.charat(toffset+k)) !=
                   character.tolowercase(other.charat(ooffset+k))
         * 
    * and: *
         * character.touppercase(this.charat(toffset+k)) !=
         *         character.touppercase(other.charat(ooffset+k))
         * 
    *
* * @param ignorecase if true, ignore case when comparing * characters. * @param toffset the starting offset of the subregion in this * string. * @param other the string argument. * @param ooffset the starting offset of the subregion in the string * argument. * @param len the number of characters to compare. * @return true if the specified subregion of this string * matches the specified subregion of the string argument; * false otherwise. whether the matching is exact * or case insensitive depends on the ignorecase * argument. */ public boolean regionmatches(boolean ignorecase, int toffset, string other, int ooffset, int len) { char ta[] = value; int to = offset + toffset; char pa[] = other.value; int po = other.offset + ooffset; // note: toffset, ooffset, or len might be near -1>>>1. if ((ooffset < 0) || (toffset < 0) || (toffset > (long)count - len) || (ooffset > (long)other.count - len)) { return false; } while (len-- > 0) { char c1 = ta[to++]; char c2 = pa[po++]; if (c1 == c2) { continue; } if (ignorecase) { // if characters don't match but case may be ignored, // try converting both characters to uppercase. // if the results match, then the comparison scan should // continue. char u1 = character.touppercase(c1); char u2 = character.touppercase(c2); if (u1 == u2) { continue; } // unfortunately, conversion to uppercase does not work properly // for the georgian alphabet, which has strange rules about case // conversion. so we need to make one last check before // exiting. if (character.tolowercase(u1) == character.tolowercase(u2)) { continue; } } return false; } return true; } /** * tests if the substring of this string beginning at the * specified index starts with the specified prefix. * * @param prefix the prefix. * @param toffset where to begin looking in this string. * @return true if the character sequence represented by the * argument is a prefix of the substring of this object starting * at index toffset; false otherwise. * the result is false if toffset is * negative or greater than the length of this * string object; otherwise the result is the same * as the result of the expression *
     *          this.substring(toffset).startswith(prefix)
     *          
*/ public boolean startswith(string prefix, int toffset) { char ta[] = value; int to = offset + toffset; char pa[] = prefix.value; int po = prefix.offset; int pc = prefix.count; // note: toffset might be near -1>>>1. if ((toffset < 0) || (toffset > count - pc)) { return false; } while (--pc >= 0) { if (ta[to++] != pa[po++]) { return false; } } return true; } /** * tests if this string starts with the specified prefix. * * @param prefix the prefix. * @return true if the character sequence represented by the * argument is a prefix of the character sequence represented by * this string; false otherwise. * note also that true will be returned if the * argument is an empty string or is equal to this * string object as determined by the * {@link #equals(object)} method. * @since 1. 0 */ public boolean startswith(string prefix) { return startswith(prefix, 0); } /** * tests if this string ends with the specified suffix. * * @param suffix the suffix. * @return true if the character sequence represented by the * argument is a suffix of the character sequence represented by * this object; false otherwise. note that the * result will be true if the argument is the * empty string or is equal to this string object * as determined by the {@link #equals(object)} method. */ public boolean endswith(string suffix) { return startswith(suffix, count - suffix.count); } /** * returns a hash code for this string. the hash code for a * string object is computed as *
     * s[0]*31^(n-1) + s[1]*31^(n-2) + ... + s[n-1]
     * 
* using int arithmetic, where s[i] is the * ith character of the string, n is the length of * the string, and ^ indicates exponentiation. * (the hash value of the empty string is zero.) * * @return a hash code value for this object. */ public int hashcode() { int h = hash; if (h == 0) { int off = offset; char val[] = value; int len = count; for (int i = 0; i < len; i++) { h = 31*h + val[off++]; } hash = h; } return h; } /** * returns the index within this string of the first occurrence of * the specified character. if a character with value * ch occurs in the character sequence represented by * this string object, then the index (in unicode * code units) of the first such occurrence is returned. for * values of ch in the range from 0 to 0xffff * (inclusive), this is the smallest value k such that: *
     * this.charat(k) == ch
     * 
* is true. for other values of ch, it is the * smallest value k such that: *
     * this.codepointat(k) == ch
     * 
* is true. in either case, if no such character occurs in this * string, then -1 is returned. * * @param ch a character (unicode code point). * @return the index of the first occurrence of the character in the * character sequence represented by this object, or * -1 if the character does not occur. */ public int indexof(int ch) { return indexof(ch, 0); } /** * returns the index within this string of the first occurrence of the * specified character, starting the search at the specified index. *

* if a character with value ch occurs in the * character sequence represented by this string * object at an index no smaller than fromindex, then * the index of the first such occurrence is returned. for values * of ch in the range from 0 to 0xffff (inclusive), * this is the smallest value k such that: *

     * (this.charat(k) == ch) && (k >= fromindex)
     * 
* is true. for other values of ch, it is the * smallest value k such that: *
     * (this.codepointat(k) == ch) && (k >= fromindex)
     * 
* is true. in either case, if no such character occurs in this * string at or after position fromindex, then * -1 is returned. * *

* there is no restriction on the value of fromindex. if it * is negative, it has the same effect as if it were zero: this entire * string may be searched. if it is greater than the length of this * string, it has the same effect as if it were equal to the length of * this string: -1 is returned. * *

all indices are specified in char values * (unicode code units). * * @param ch a character (unicode code point). * @param fromindex the index to start the search from. * @return the index of the first occurrence of the character in the * character sequence represented by this object that is greater * than or equal to fromindex, or -1 * if the character does not occur. */ public int indexof(int ch, int fromindex) { int max = offset + count; char v[] = value; if (fromindex < 0) { fromindex = 0; } else if (fromindex >= count) { // note: fromindex might be near -1>>>1. return -1; } int i = offset + fromindex; if (ch < character.min_supplementary_code_point) { // handle most cases here (ch is a bmp code point or a // negative value (invalid code point)) for (; i < max ; i++) { if (v[i] == ch) { return i - offset; } } return -1; } if (ch <= character.max_code_point) { // handle supplementary characters here char[] surrogates = character.tochars(ch); for (; i < max; i++) { if (v[i] == surrogates[0]) { if (i + 1 == max) { break; } if (v[i+1] == surrogates[1]) { return i - offset; } } } } return -1; } /** * returns the index within this string of the last occurrence of * the specified character. for values of ch in the * range from 0 to 0xffff (inclusive), the index (in unicode code * units) returned is the largest value k such that: *

     * this.charat(k) == ch
     * 
* is true. for other values of ch, it is the * largest value k such that: *
     * this.codepointat(k) == ch
     * 
* is true. in either case, if no such character occurs in this * string, then -1 is returned. the * string is searched backwards starting at the last * character. * * @param ch a character (unicode code point). * @return the index of the last occurrence of the character in the * character sequence represented by this object, or * -1 if the character does not occur. */ public int lastindexof(int ch) { return lastindexof(ch, count - 1); } /** * returns the index within this string of the last occurrence of * the specified character, searching backward starting at the * specified index. for values of ch in the range * from 0 to 0xffff (inclusive), the index returned is the largest * value k such that: *
     * (this.charat(k) == ch) && (k <= fromindex)
     * 
* is true. for other values of ch, it is the * largest value k such that: *
     * (this.codepointat(k) == ch) && (k <= fromindex)
     * 
* is true. in either case, if no such character occurs in this * string at or before position fromindex, then * -1 is returned. * *

all indices are specified in char values * (unicode code units). * * @param ch a character (unicode code point). * @param fromindex the index to start the search from. there is no * restriction on the value of fromindex. if it is * greater than or equal to the length of this string, it has * the same effect as if it were equal to one less than the * length of this string: this entire string may be searched. * if it is negative, it has the same effect as if it were -1: * -1 is returned. * @return the index of the last occurrence of the character in the * character sequence represented by this object that is less * than or equal to fromindex, or -1 * if the character does not occur before that point. */ public int lastindexof(int ch, int fromindex) { int min = offset; char v[] = value; int i = offset + ((fromindex >= count) ? count - 1 : fromindex); if (ch < character.min_supplementary_code_point) { // handle most cases here (ch is a bmp code point or a // negative value (invalid code point)) for (; i >= min ; i--) { if (v[i] == ch) { return i - offset; } } return -1; } int max = offset + count; if (ch <= character.max_code_point) { // handle supplementary characters here char[] surrogates = character.tochars(ch); for (; i >= min; i--) { if (v[i] == surrogates[0]) { if (i + 1 == max) { break; } if (v[i+1] == surrogates[1]) { return i - offset; } } } } return -1; } /** * returns the index within this string of the first occurrence of the * specified substring. the integer returned is the smallest value * k such that: *

     * this.startswith(str, k)
     * 
* is true. * * @param str any string. * @return if the string argument occurs as a substring within this * object, then the index of the first character of the first * such substring is returned; if it does not occur as a * substring, -1 is returned. */ public int indexof(string str) { return indexof(str, 0); } /** * returns the index within this string of the first occurrence of the * specified substring, starting at the specified index. the integer * returned is the smallest value k for which: *
     *     k >= math.min(fromindex, this.length()) && this.startswith(str, k)
     * 
* if no such value of k exists, then -1 is returned. * * @param str the substring for which to search. * @param fromindex the index from which to start the search. * @return the index within this string of the first occurrence of the * specified substring, starting at the specified index. */ public int indexof(string str, int fromindex) { return indexof(value, offset, count, str.value, str.offset, str.count, fromindex); } /** * code shared by string and stringbuffer to do searches. the * source is the character array being searched, and the target * is the string being searched for. * * @param source the characters being searched. * @param sourceoffset offset of the source string. * @param sourcecount count of the source string. * @param target the characters being searched for. * @param targetoffset offset of the target string. * @param targetcount count of the target string. * @param fromindex the index to begin searching from. */ static int indexof(char[] source, int sourceoffset, int sourcecount, char[] target, int targetoffset, int targetcount, int fromindex) { if (fromindex >= sourcecount) { return (targetcount == 0 ? sourcecount : -1); } if (fromindex < 0) { fromindex = 0; } if (targetcount == 0) { return fromindex; } char first = target[targetoffset]; int max = sourceoffset + (sourcecount - targetcount); for (int i = sourceoffset + fromindex; i <= max; i++) { /* look for first character. */ if (source[i] != first) { while (++i <= max && source[i] != first); } /* found first character, now look at the rest of v2 */ if (i <= max) { int j = i + 1; int end = j + targetcount - 1; for (int k = targetoffset + 1; j < end && source[j] == target[k]; j++, k++); if (j == end) { /* found whole string. */ return i - sourceoffset; } } } return -1; } /** * returns the index within this string of the rightmost occurrence * of the specified substring. the rightmost empty string "" is * considered to occur at the index value this.length(). * the returned index is the largest value k such that *
     * this.startswith(str, k)
     * 
* is true. * * @param str the substring to search for. * @return if the string argument occurs one or more times as a substring * within this object, then the index of the first character of * the last such substring is returned. if it does not occur as * a substring, -1 is returned. */ public int lastindexof(string str) { return lastindexof(str, count); } /** * returns the index within this string of the last occurrence of the * specified substring, searching backward starting at the specified index. * the integer returned is the largest value k such that: *
     *     k <= math.min(fromindex, this.length()) && this.startswith(str, k)
     * 
* if no such value of k exists, then -1 is returned. * * @param str the substring to search for. * @param fromindex the index to start the search from. * @return the index within this string of the last occurrence of the * specified substring. */ public int lastindexof(string str, int fromindex) { return lastindexof(value, offset, count, str.value, str.offset, str.count, fromindex); } /** * code shared by string and stringbuffer to do searches. the * source is the character array being searched, and the target * is the string being searched for. * * @param source the characters being searched. * @param sourceoffset offset of the source string. * @param sourcecount count of the source string. * @param target the characters being searched for. * @param targetoffset offset of the target string. * @param targetcount count of the target string. * @param fromindex the index to begin searching from. */ static int lastindexof(char[] source, int sourceoffset, int sourcecount, char[] target, int targetoffset, int targetcount, int fromindex) { /* * check arguments; return immediately where possible. for * consistency, don't check for null str. */ int rightindex = sourcecount - targetcount; if (fromindex < 0) { return -1; } if (fromindex > rightindex) { fromindex = rightindex; } /* empty string always matches. */ if (targetcount == 0) { return fromindex; } int strlastindex = targetoffset + targetcount - 1; char strlastchar = target[strlastindex]; int min = sourceoffset + targetcount - 1; int i = min + fromindex; startsearchforlastchar: while (true) { while (i >= min && source[i] != strlastchar) { i--; } if (i < min) { return -1; } int j = i - 1; int start = j - (targetcount - 1); int k = strlastindex - 1; while (j > start) { if (source[j--] != target[k--]) { i--; continue startsearchforlastchar; } } return start - sourceoffset + 1; } } /** * returns a new string that is a substring of this string. the * substring begins with the character at the specified index and * extends to the end of this string.

* examples: *

     * "unhappy".substring(2) returns "happy"
     * "harbison".substring(3) returns "bison"
     * "emptiness".substring(9) returns "" (an empty string)
     * 
* * @param beginindex the beginning index, inclusive. * @return the specified substring. * @exception indexoutofboundsexception if * beginindex is negative or larger than the * length of this string object. */ public string substring(int beginindex) { return substring(beginindex, count); } /** * returns a new string that is a substring of this string. the * substring begins at the specified beginindex and * extends to the character at index endindex - 1. * thus the length of the substring is endindex-beginindex. *

* examples: *

     * "hamburger".substring(4, 8) returns "urge"
     * "smiles".substring(1, 5) returns "mile"
     * 
* * @param beginindex the beginning index, inclusive. * @param endindex the ending index, exclusive. * @return the specified substring. * @exception indexoutofboundsexception if the * beginindex is negative, or * endindex is larger than the length of * this string object, or * beginindex is larger than * endindex. */ public string substring(int beginindex, int endindex) { if (beginindex < 0) { throw new stringindexoutofboundsexception(beginindex); } if (endindex > count) { throw new stringindexoutofboundsexception(endindex); } if (beginindex > endindex) { throw new stringindexoutofboundsexception(endindex - beginindex); } return ((beginindex == 0) && (endindex == count)) ? this : new string(offset + beginindex, endindex - beginindex, value); } /** * returns a new character sequence that is a subsequence of this sequence. * *

an invocation of this method of the form * *

     * str.subsequence(begin, end)
* * behaves in exactly the same way as the invocation * *
     * str.substring(begin, end)
* * this method is defined so that the string class can implement * the {@link charsequence} interface.

 

* * @param beginindex the begin index, inclusive. * @param endindex the end index, exclusive. * @return the specified subsequence. * * @throws indexoutofboundsexception * if beginindex or endindex are negative, * if endindex is greater than length(), * or if beginindex is greater than startindex * * @since 1.4 * @spec jsr-51 */ public charsequence subsequence(int beginindex, int endindex) { return this.substring(beginindex, endindex); } /** * concatenates the specified string to the end of this string. *

* if the length of the argument string is 0, then this * string object is returned. otherwise, a new * string object is created, representing a character * sequence that is the concatenation of the character sequence * represented by this string object and the character * sequence represented by the argument string.

* examples: *

     * "cares".concat("s") returns "caress"
     * "to".concat("get").concat("her") returns "together"
     * 
* * @param str the string that is concatenated to the end * of this string. * @return a string that represents the concatenation of this object's * characters followed by the string argument's characters. */ public string concat(string str) { int otherlen = str.length(); if (otherlen == 0) { return this; } char buf[] = new char[count + otherlen]; getchars(0, count, buf, 0); str.getchars(0, otherlen, buf, count); return new string(0, count + otherlen, buf); } /** * returns a new string resulting from replacing all occurrences of * oldchar in this string with newchar. *

* if the character oldchar does not occur in the * character sequence represented by this string object, * then a reference to this string object is returned. * otherwise, a new string object is created that * represents a character sequence identical to the character sequence * represented by this string object, except that every * occurrence of oldchar is replaced by an occurrence * of newchar. *

* examples: *

     * "mesquite in your cellar".replace('e', 'o')
     *         returns "mosquito in your collar"
     * "the war of baronets".replace('r', 'y')
     *         returns "the way of bayonets"
     * "sparring with a purple porpoise".replace('p', 't')
     *         returns "starring with a turtle tortoise"
     * "jonl".replace('q', 'x') returns "jonl" (no change)
     * 
* * @param oldchar the old character. * @param newchar the new character. * @return a string derived from this string by replacing every * occurrence of oldchar with newchar. */ public string replace(char oldchar, char newchar) { if (oldchar != newchar) { int len = count; int i = -1; char[] val = value; /* avoid getfield opcode */ int off = offset; /* avoid getfield opcode */ while (++i < len) { if (val[off + i] == oldchar) { break; } } if (i < len) { char buf[] = new char[len]; for (int j = 0 ; j < i ; j++) { buf[j] = val[off+j]; } while (i < len) { char c = val[off + i]; buf[i] = (c == oldchar) ? newchar : c; i++; } return new string(0, len, buf); } } return this; } /** * tells whether or not this string matches the given . * *

an invocation of this method of the form * str.matches(regex) yields exactly the * same result as the expression * *

{@link java.util.regex.pattern}.{@link * java.util.regex.pattern#matches(string,charsequence) * matches}(regex, str)
* * @param regex * the regular expression to which this string is to be matched * * @return true

如您对本文有疑问或者有任何想说的,请点击进行留言回复,万千网友为您解惑!

相关文章:

验证码:
移动技术网