当前位置: 移动技术网 > IT编程>开发语言>Java > Netty中的ChannelFuture和ChannelPromise

Netty中的ChannelFuture和ChannelPromise

2019年06月03日  | 移动技术网IT编程  | 我要评论

在netty使用channelfuture和channelpromise进行异步操作的处理

这是官方给出的channelfutur描述

 1  *                                      | completed successfully    |
 2  *                                      +---------------------------+
 3  *                                 +---->      isdone() = true      |
 4  * +--------------------------+    |    |   issuccess() = true      |
 5  * |        uncompleted       |    |    +===========================+
 6  * +--------------------------+    |    | completed with failure    |
 7  * |      isdone() = false    |    |    +---------------------------+
 8  * |   issuccess() = false    |----+---->      isdone() = true      |
 9  * | iscancelled() = false    |    |    |       cause() = non-null  |
10  * |       cause() = null     |    |    +===========================+
11  * +--------------------------+    |    | completed by cancellation |
12  *                                 |    +---------------------------+
13  *                                 +---->      isdone() = true      |
14  *                                      | iscancelled() = true      |
15  *                                      +---------------------------+

由图可以知道channelfutur有四种状态:uncompleted、completed successfully、completed with failure、completed by cancellation,这几种状态是由isdone、issuccess、iscancelled、cause这四种方法的返回值决定的。

 

channelfutur接口的定义如下:

 1 public interface channelfuture extends future<void> {
 2     channel channel();
 3 
 4     channelfuture addlistener(genericfuturelistener<? extends future<? super void>> var1);
 5 
 6     channelfuture addlisteners(genericfuturelistener... var1);
 7 
 8     channelfuture removelistener(genericfuturelistener<? extends future<? super void>> var1);
 9 
10     channelfuture removelisteners(genericfuturelistener... var1);
11 
12     channelfuture sync() throws interruptedexception;
13 
14     channelfuture syncuninterruptibly();
15 
16     channelfuture await() throws interruptedexception;
17 
18     channelfuture awaituninterruptibly();
19 
20     boolean isvoid();
21 }

继承自netty的future:

 1 public interface future<v> extends java.util.concurrent.future<v> {
 2     boolean issuccess();
 3 
 4     boolean iscancellable();
 5 
 6     throwable cause();
 7 
 8     future<v> addlistener(genericfuturelistener<? extends future<? super v>> var1);
 9 
10     future<v> addlisteners(genericfuturelistener... var1);
11 
12     future<v> removelistener(genericfuturelistener<? extends future<? super v>> var1);
13 
14     future<v> removelisteners(genericfuturelistener... var1);
15 
16     future<v> sync() throws interruptedexception;
17 
18     future<v> syncuninterruptibly();
19 
20     future<v> await() throws interruptedexception;
21 
22     future<v> awaituninterruptibly();
23 
24     boolean await(long var1, timeunit var3) throws interruptedexception;
25 
26     boolean await(long var1) throws interruptedexception;
27 
28     boolean awaituninterruptibly(long var1, timeunit var3);
29 
30     boolean awaituninterruptibly(long var1);
31 
32     v getnow();
33 
34     boolean cancel(boolean var1);
35 }

 

netty的future又继承自jdk的future:

 1 public interface future<v> {
 2 
 3     boolean cancel(boolean mayinterruptifrunning);
 4     
 5     boolean iscancelled();
 6 
 7     boolean isdone();
 8     
 9     v get() throws interruptedexception, executionexception;
10 
11     v get(long timeout, timeunit unit)
12         throws interruptedexception, executionexception, timeoutexception;
13 }


channelpromise继承了channelfuture:

 1 public interface channelpromise extends channelfuture, promise<void> {
 2     channel channel();
 3 
 4     channelpromise setsuccess(void var1);
 5 
 6     channelpromise setsuccess();
 7 
 8     boolean trysuccess();
 9 
10     channelpromise setfailure(throwable var1);
11 
12     channelpromise addlistener(genericfuturelistener<? extends future<? super void>> var1);
13 
14     channelpromise addlisteners(genericfuturelistener... var1);
15 
16     channelpromise removelistener(genericfuturelistener<? extends future<? super void>> var1);
17 
18     channelpromise removelisteners(genericfuturelistener... var1);
19 
20     channelpromise sync() throws interruptedexception;
21 
22     channelpromise syncuninterruptibly();
23 
24     channelpromise await() throws interruptedexception;
25 
26     channelpromise awaituninterruptibly();
27 
28     channelpromise unvoid();
29 }

其中promise接口定义如下:

 1 public interface promise<v> extends future<v> {
 2     promise<v> setsuccess(v var1);
 3 
 4     boolean trysuccess(v var1);
 5 
 6     promise<v> setfailure(throwable var1);
 7 
 8     boolean tryfailure(throwable var1);
 9 
10     boolean setuncancellable();
11 
12     promise<v> addlistener(genericfuturelistener<? extends future<? super v>> var1);
13 
14     promise<v> addlisteners(genericfuturelistener... var1);
15 
16     promise<v> removelistener(genericfuturelistener<? extends future<? super v>> var1);
17 
18     promise<v> removelisteners(genericfuturelistener... var1);
19 
20     promise<v> await() throws interruptedexception;
21 
22     promise<v> awaituninterruptibly();
23 
24     promise<v> sync() throws interruptedexception;
25 
26     promise<v> syncuninterruptibly();
27 }


在netty中,无论是服务端还是客户端,在channel注册时都会为其绑定一个channelpromise,默认实现是defaultchannelpromise

defaultchannelpromise定义如下:

  1 public class defaultchannelpromise extends defaultpromise<void> implements channelpromise, flushcheckpoint {
  2 
  3     private final channel channel;
  4     private long checkpoint;
  5 
  6     public defaultchannelpromise(channel channel) {
  7         this.channel = checknotnull(channel, "channel");
  8     }
  9     
 10     public defaultchannelpromise(channel channel, eventexecutor executor) {
 11         super(executor);
 12         this.channel = checknotnull(channel, "channel");
 13     }
 14 
 15     @override
 16     protected eventexecutor executor() {
 17         eventexecutor e = super.executor();
 18         if (e == null) {
 19             return channel().eventloop();
 20         } else {
 21             return e;
 22         }
 23     }
 24 
 25     @override
 26     public channel channel() {
 27         return channel;
 28     }
 29 
 30     @override
 31     public channelpromise setsuccess() {
 32         return setsuccess(null);
 33     }
 34 
 35     @override
 36     public channelpromise setsuccess(void result) {
 37         super.setsuccess(result);
 38         return this;
 39     }
 40 
 41     @override
 42     public boolean trysuccess() {
 43         return trysuccess(null);
 44     }
 45 
 46     @override
 47     public channelpromise setfailure(throwable cause) {
 48         super.setfailure(cause);
 49         return this;
 50     }
 51 
 52     @override
 53     public channelpromise addlistener(genericfuturelistener<? extends future<? super void>> listener) {
 54         super.addlistener(listener);
 55         return this;
 56     }
 57 
 58     @override
 59     public channelpromise addlisteners(genericfuturelistener<? extends future<? super void>>... listeners) {
 60         super.addlisteners(listeners);
 61         return this;
 62     }
 63 
 64     @override
 65     public channelpromise removelistener(genericfuturelistener<? extends future<? super void>> listener) {
 66         super.removelistener(listener);
 67         return this;
 68     }
 69 
 70     @override
 71     public channelpromise removelisteners(genericfuturelistener<? extends future<? super void>>... listeners) {
 72         super.removelisteners(listeners);
 73         return this;
 74     }
 75 
 76     @override
 77     public channelpromise sync() throws interruptedexception {
 78         super.sync();
 79         return this;
 80     }
 81 
 82     @override
 83     public channelpromise syncuninterruptibly() {
 84         super.syncuninterruptibly();
 85         return this;
 86     }
 87 
 88     @override
 89     public channelpromise await() throws interruptedexception {
 90         super.await();
 91         return this;
 92     }
 93 
 94     @override
 95     public channelpromise awaituninterruptibly() {
 96         super.awaituninterruptibly();
 97         return this;
 98     }
 99 
100     @override
101     public long flushcheckpoint() {
102         return checkpoint;
103     }
104 
105     @override
106     public void flushcheckpoint(long checkpoint) {
107         this.checkpoint = checkpoint;
108     }
109 
110     @override
111     public channelpromise promise() {
112         return this;
113     }
114 
115     @override
116     protected void checkdeadlock() {
117         if (channel().isregistered()) {
118             super.checkdeadlock();
119         }
120     }
121 
122     @override
123     public channelpromise unvoid() {
124         return this;
125     }
126 
127     @override
128     public boolean isvoid() {
129         return false;
130     }
131 }

可以看到这个defaultchannelpromise仅仅是将channel封装了,而且其基本上所有方法的实现都依赖于父类defaultpromise

defaultpromise中的实现是整个channelfuture和channelpromise的核心所在:

defaultpromise中有如下几个状态量:

1 private static final int max_listener_stack_depth = math.min(8,
2             systempropertyutil.getint("io.netty.defaultpromise.maxlistenerstackdepth", 8));
3 private static final object success = new object();
4 private static final object uncancellable = new object();
5 private static final causeholder cancellation_cause_holder = new causeholder(throwableutil.unknownstacktrace(
6             new cancellationexception(), defaultpromise.class, "cancel(...)"));
7 private static final atomicreferencefieldupdater<defaultpromise, object> result_updater =
8             atomicreferencefieldupdater.newupdater(defaultpromise.class, object.class, "result");         

max_listener_stack_depth: 表示最多可执行listeners的数量,默认是8
success :表示异步操作正常完成
uncancellable:表示异步操作不可取消,并且尚未完成
cancellation_cause_holder:表示异步操作取消监听,用于cancel操作,
而causeholder 的实例对象是用来表示异步操作异常结束,同时保存异常信息:

1 private static final class causeholder {
2     final throwable cause;
3     causeholder(throwable cause) {
4         this.cause = cause;
5     }
6 }


result_updater:是一个原子更新器,通过cas操作,原子化更新 defaultpromise对象的名为result的成员,这个result成员是其异步操作判断的关键所在

defaultpromise的成员及构造方法定义:

 1 public class defaultpromise<v> extends abstractfuture<v> implements promise<v> {
 2     private volatile object result;
 3     private final eventexecutor executor;
 4     private object listeners;
 5     private short waiters;
 6     private boolean notifyinglisteners;
 7     
 8     public defaultpromise(eventexecutor executor) {
 9         this.executor = checknotnull(executor, "executor");
10     }
11 }

result:就是前面说的,判断异步操作状态的关键
result的取值有:success 、uncancellable、causeholder以及null (其实还可以是泛型v类型的任意对象,这里暂不考虑)
executor:就是channel绑定的nioeventloop,在我之前的博客说过,channel的异步操作都是在nioeventloop的线程中完成的([netty中nioeventloopgroup的创建源码分析](https://blog.csdn.net/z_chenchen/article/details/90567863))
listeners:通过一个object保存所有对异步操作的监听,用于异步操作的回调
waiters:记录阻塞中的listeners的数量
notifyinglisteners:是否需要唤醒的标志

首先来看isdone方法,通过之前的图可以知道,
isdone为false对应了uncompleted状态,即异步操作尚未完成;
isdone为true则代表了异步操作完成,但是还是有三种完成情况,需要结合别的判断方法才能具体知道是哪种情况;

isdone方法:

1 @override
2 public boolean isdone() {
3     return isdone0(result);
4 }

调用isdone0:

1 private static boolean isdone0(object result) {
2     return result != null && result != uncancellable;
3 }

有如下几种情况:
result等于null,result没有赋值,表示异步操作尚未完成(从这里就能想到异步操作完成,需要调用某个set方法来改变result的状态)
result是uncancellable状态,表示执行中的异步操作不可取消,当然也就是异步操作尚未完成
result不等于null,且不等于uncancellable,就表示异步操作完成(包括正常完成,以及异常结束,需要由cause方法进一步判断)

issuccess方法:

1 @override
2 public boolean issuccess() {
3     object result = this.result;
4     return result != null && result != uncancellable && !(result instanceof causeholder);
5 }

由这里可以知道当且仅当result 为success状态时,才返回true(其余除uncancellable和null的值其实也可以,这里暂不考虑)

iscancelled方法:

1 @override
2 public boolean iscancelled() {
3     return iscancelled0(result);
4 }

调用iscancelled0方法:

1 private static boolean iscancelled0(object result) {
2     return result instanceof causeholder && ((causeholder) result).cause instanceof cancellationexception;
3 }

只有当result是cancellationexception的实例时,表示取消异步操作

 

接着来看cause方法:

1 @override
2 public throwable cause() {
3     object result = this.result;
4     return (result instanceof causeholder) ? ((causeholder) result).cause : null;
5 }

和上面同理,通过判别resul是否是causeholder的实现类,若是,将causeholder保存的异常返回。

几种状态的判别说完了,下面看一下如何设置这几种状态的:
setsuccess方法:

1 @override
2 public promise<v> setsuccess(v result) {
3     if (setsuccess0(result)) {
4         notifylisteners();
5         return this;
6     }
7     throw new illegalstateexception("complete already: " + this);
8 }

首先调用setsuccess0方法,其中result的泛型通过defaultchannelpromise可知是void,在defaultchannelpromise中所有的set和try操作参数都是null,这里的result也就不去考虑:

1 private boolean setsuccess0(v result) {
2     return setvalue0(result == null ? success : result);
3 }

继续调用setvalue0方法:

1 private boolean setvalue0(object objresult) {
2     if (result_updater.compareandset(this, null, objresult) ||
3         result_updater.compareandset(this, uncancellable, objresult)) {
4         checknotifywaiters();
5         return true;
6     }
7     return false;
8 }

通过cas操作,将result状态变为success

其中checknotifywaiters方法:

1 private synchronized void checknotifywaiters() {
2     if (waiters > 0) {
3         notifyall();
4     }
5 }

检查waiters的个数,唤醒所有阻塞中的this,sync方法会引起阻塞

 

回到setsuccess方法中,setsuccess0通过cas操作,将result状态更新为success成功后,调用
notifylisteners方法,唤醒所有listener完成对异步操作的回调

listeners是通过addlistener方法添加的,用来对异步操作进行侦听:
看到addlistener方法:

 1 @override
 2 public promise<v> addlistener(genericfuturelistener<? extends future<? super v>> listener) {
 3     checknotnull(listener, "listener");
 4     
 5     synchronized (this) {
 6     addlistener0(listener);
 7     }
 8     
 9     if (isdone()) {
10     notifylisteners();
11     }
12     
13     return this;
14 }
15 
16 @override
17 public promise<v> addlisteners(genericfuturelistener<? extends future<? super v>>... listeners) {
18     checknotnull(listeners, "listeners");
19 
20     synchronized (this) {
21         for (genericfuturelistener<? extends future<? super v>> listener : listeners) {
22             if (listener == null) {
23                 break;
24             }
25             addlistener0(listener);
26         }
27     }
28 
29     if (isdone()) {
30         notifylisteners();
31     }
32 
33     return this;
34 }

其中genericfuturelistener接口定义如下:

1 public interface genericfuturelistener<f extends future<?>> extends eventlistener {
2      /**
3      * invoked when the operation associated with the {@link future} has been completed.
4      *
5      * @param future  the source {@link future} which called this callback
6      */
7     void operationcomplete(f future) throws exception;
8 }

可以看到listener其实就是通过operationcomplete方法,来完成回调,对future对象进行处理,由注释可知operationcomplete方法是在future操作完成时调用

addlisteners方法的实现比较简单,实现核心是在addlistener0中:

1 private void addlistener0(genericfuturelistener<? extends future<? super v>> listener) {
2     if (listeners == null) {
3         listeners = listener;
4     } else if (listeners instanceof defaultfuturelisteners) {
5         ((defaultfuturelisteners) listeners).add(listener);
6     } else {
7         listeners = new defaultfuturelisteners((genericfuturelistener<?>) listeners, listener);
8     }
9 }

其中defaultfuturelisteners是将genericfuturelistener对象封装的一个数组:

 1 final class defaultfuturelisteners {
 2 
 3     private genericfuturelistener<? extends future<?>>[] listeners;
 4     private int size;
 5     private int progressivesize;
 6 
 7     @suppresswarnings("unchecked")
 8     defaultfuturelisteners(
 9             genericfuturelistener<? extends future<?>> first, genericfuturelistener<? extends future<?>> second) {
10         listeners = new genericfuturelistener[2];
11         listeners[0] = first;
12         listeners[1] = second;
13         size = 2;
14         if (first instanceof genericprogressivefuturelistener) {
15             progressivesize ++;
16         }
17         if (second instanceof genericprogressivefuturelistener) {
18             progressivesize ++;
19         }
20     }
21 
22     public void add(genericfuturelistener<? extends future<?>> l) {
23         genericfuturelistener<? extends future<?>>[] listeners = this.listeners;
24         final int size = this.size;
25         if (size == listeners.length) {
26             this.listeners = listeners = arrays.copyof(listeners, size << 1);
27         }
28         listeners[size] = l;
29         this.size = size + 1;
30 
31         if (l instanceof genericprogressivefuturelistener) {
32             progressivesize ++;
33         }
34     }
35 
36     public void remove(genericfuturelistener<? extends future<?>> l) {
37         final genericfuturelistener<? extends future<?>>[] listeners = this.listeners;
38         int size = this.size;
39         for (int i = 0; i < size; i ++) {
40             if (listeners[i] == l) {
41                 int listenerstomove = size - i - 1;
42                 if (listenerstomove > 0) {
43                     system.arraycopy(listeners, i + 1, listeners, i, listenerstomove);
44                 }
45                 listeners[-- size] = null;
46                 this.size = size;
47 
48                 if (l instanceof genericprogressivefuturelistener) {
49                     progressivesize --;
50                 }
51                 return;
52             }
53         }
54     }
55 
56     public genericfuturelistener<? extends future<?>>[] listeners() {
57         return listeners;
58     }
59 
60     public int size() {
61         return size;
62     }
63 
64     public int progressivesize() {
65         return progressivesize;
66     }
67 }

size:记录listeners的个数
progressivesize:记录genericprogressivefuturelistener类型的listeners的个数
defaultfuturelisteners 中对数组的操作比较简单,
add方法,当size达到数组长度时,进行二倍扩容,

其中genericprogressivefuturelistener继承自genericfuturelistener:

 1 public interface genericprogressivefuturelistener<f extends progressivefuture<?>> extends genericfuturelistener<f> {
 2     /**
 3      * invoked when the operation has progressed.
 4      *
 5      * @param progress the progress of the operation so far (cumulative)
 6      * @param total the number that signifies the end of the operation when {@code progress} reaches at it.
 7      *              {@code -1} if the end of operation is unknown.
 8      */
 9     void operationprogressed(f future, long progress, long total) throws exception;
10 }

由注释可知operationprogressed是在future操作进行时调用,这里不对genericprogressivefuturelistener过多讨论

回到addlistener0方法,由defaultfuturelisteners就可以知道,实际上通过defaultfuturelisteners管理的一维数组来保存listeners

在addlistener方法完成对listener的添加后,还会调用isdone方法检查当前异步操作是否完成,若是完成需要调用notifylisteners,直接唤醒所有listeners完后对异步操作的回调

有add就有remove,removelistener方法:

 1 @override
 2 public promise<v> removelistener(final genericfuturelistener<? extends future<? super v>> listener) {
 3     checknotnull(listener, "listener");
 4 
 5     synchronized (this) {
 6         removelistener0(listener);
 7     }
 8 
 9     return this;
10 }
11 
12 @override
13 public promise<v> removelisteners(final genericfuturelistener<? extends future<? super v>>... listeners) {
14     checknotnull(listeners, "listeners");
15 
16     synchronized (this) {
17         for (genericfuturelistener<? extends future<? super v>> listener : listeners) {
18             if (listener == null) {
19                 break;
20             }
21             removelistener0(listener);
22         }
23     }
24 
25     return this;
26 }

还是由removelistener0来实现:

1 private void removelistener0(genericfuturelistener<? extends future<? super v>> listener) {
2     if (listeners instanceof defaultfuturelisteners) {
3         ((defaultfuturelisteners) listeners).remove(listener);
4     } else if (listeners == listener) {
5         listeners = null;
6     }
7 }

看过之前的内容在看这里就比较简单了,通过defaultfuturelisteners去删除

notifylisteners方法:

 1 private void notifylisteners() {
 2     eventexecutor executor = executor();
 3     if (executor.ineventloop()) {
 4         final internalthreadlocalmap threadlocals = internalthreadlocalmap.get();
 5         final int stackdepth = threadlocals.futurelistenerstackdepth();
 6         if (stackdepth < max_listener_stack_depth) {
 7             threadlocals.setfuturelistenerstackdepth(stackdepth + 1);
 8             try {
 9                 notifylistenersnow();
10             } finally {
11                 threadlocals.setfuturelistenerstackdepth(stackdepth);
12             }
13             return;
14         }
15     }
16 
17     safeexecute(executor, new runnable() {
18         @override
19         public void run() {
20             notifylistenersnow();
21         }
22     });
23 }

其中executor方法:

1 protected eventexecutor executor() {
2     return executor;
3 }

用来获取executor轮询线程对象

判断executor是否处于轮询,否则需要通过safeexecute方法处理listeners的侦听,
safeexecute方法:

1 private static void safeexecute(eventexecutor executor, runnable task) {
2     try {
3         executor.execute(task);
4     } catch (throwable t) {
5         rejectedexecutionlogger.error("failed to submit a listener notification task. event loop shut down?", t);
6     }
7 }

这里保证了listeners的侦听回调是异步执行

internalthreadlocalmap在我之前的博客中说过,是netty使用的threadlocal (netty中fastthreadlocal源码分析

去线程本地变量中找futurelistenerstackdepth(默认为0),判断stackdepth是否小于max_listener_stack_depth,否则也要通过safeexecute方法处理listeners的侦听
核心都是调用notifylistenersnow方法:

 1 private void notifylistenersnow() {
 2     object listeners;
 3     synchronized (this) {
 4         // only proceed if there are listeners to notify and we are not already notifying listeners.
 5         if (notifyinglisteners || this.listeners == null) {
 6             return;
 7         }
 8         notifyinglisteners = true;
 9         listeners = this.listeners;
10         this.listeners = null;
11     }
12     for (;;) {
13         if (listeners instanceof defaultfuturelisteners) {
14             notifylisteners0((defaultfuturelisteners) listeners);
15         } else {
16             notifylistener0(this, (genericfuturelistener<?>) listeners);
17         }
18         synchronized (this) {
19             if (this.listeners == null) {
20                 // nothing can throw from within this method, so setting notifyinglisteners back to false does not
21                 // need to be in a finally block.
22                 notifyinglisteners = false;
23                 return;
24             }
25             listeners = this.listeners;
26             this.listeners = null;
27         }
28     }
29 }

先检查是否需要监听,满足条件后,判断listeners是否是defaultfuturelisteners,即包装后的数组
notifylisteners0方法:

1 private void notifylisteners0(defaultfuturelisteners listeners) {
2    genericfuturelistener<?>[] a = listeners.listeners();
3    int size = listeners.size();
4    for (int i = 0; i < size; i ++) {
5        notifylistener0(this, a[i]);
6    }
7 }

遍历这个数组,实则调用notifylistener0方法:

1 private static void notifylistener0(future future, genericfuturelistener l) {
2     try {
3         l.operationcomplete(future);
4     } catch (throwable t) {
5         if (logger.iswarnenabled()) {
6             logger.warn("an exception was thrown by " + l.getclass().getname() + ".operationcomplete()", t);
7         }
8     }
9 }

这里就可以看到,完成了对operationcomplete的回调,处理future

 

setsuccess结束,再来看trysuccess方法:

1 @override
2 public boolean trysuccess(v result) {
3     if (setsuccess0(result)) {
4         notifylisteners();
5         return true;
6     }
7     return false;
8 }

对比setsuccess来看,只有返回值不一样

setfailure方法:

 1 @override
 2 public promise<v> setfailure(throwable cause) {
 3     if (setfailure0(cause)) {
 4         notifylisteners();
 5         return this;
 6     }
 7     throw new illegalstateexception("complete already: " + this, cause);
 8 }
 9 
10 private boolean setfailure0(throwable cause) {
11     return setvalue0(new causeholder(checknotnull(cause, "cause")));
12 }
13 
14 private boolean setvalue0(object objresult) {
15     if (result_updater.compareandset(this, null, objresult) ||
16         result_updater.compareandset(this, uncancellable, objresult)) {
17         checknotifywaiters();
18         return true;
19     }
20     return false;
21 }

和setsuccess逻辑一样,只不过cas操作将状态变为了causeholder对象,成功后唤醒listeners对异步操作的回调

tryfailure方法:

1 @override
2 public boolean tryfailure(throwable cause) {
3     if (setfailure0(cause)) {
4         notifylisteners();
5         return true;
6     }
7     return false;
8 }

也都是一个逻辑

还有一个setuncancellable方法:

1 @override
2 public boolean setuncancellable() {
3     if (result_updater.compareandset(this, null, uncancellable)) {
4         return true;
5     }
6     object result = this.result;
7     return !isdone0(result) || !iscancelled0(result);
8 }

若是result状态为null,异步操作尚未结束,直接通过cas操作将状态变为uncancellable
否则若是根据状态来判断


下来看到cancel方法:

 1 /**
 2  * {@inheritdoc}
 3  *
 4  * @param mayinterruptifrunning this value has no effect in this implementation.
 5  */
 6 @override
 7 public boolean cancel(boolean mayinterruptifrunning) {
 8     if (result_updater.compareandset(this, null, cancellation_cause_holder)) {
 9         checknotifywaiters();
10         notifylisteners();
11         return true;
12     }
13     return false;
14 }

mayinterruptifrunning正如注释中所说,在这里没有什么作用
还是通过cas操作,将状态变为cancellation_cause_holder,调用checknotifywaiters唤醒因sync阻塞的线程,notifylisteners方法回调listeners的侦听


最后看到sync方法:

1 @override
2 public promise<v> sync() throws interruptedexception {
3     await();
4     rethrowiffailed();
5     return this;
6 }

先调用await方法:

 1 @override
 2 public promise<v> await() throws interruptedexception {
 3     if (isdone()) {
 4         return this;
 5     }
 6 
 7     if (thread.interrupted()) {
 8         throw new interruptedexception(tostring());
 9     }
10 
11     checkdeadlock();
12 
13     synchronized (this) {
14         while (!isdone()) {
15             incwaiters();
16             try {
17                 wait();
18             } finally {
19                 decwaiters();
20             }
21         }
22     }
23     return this;
24 }

先判断能否执行(异步操作尚未结束,当前线程没有被中断),然后调用checkdeadlock方法:

1 protected void checkdeadlock() {
2     eventexecutor e = executor();
3     if (e != null && e.ineventloop()) {
4         throw new blockingoperationexception(tostring());
5     }
6 }

检查轮询线程是否在工作

在synchronized块中以自身为锁,自旋等待异步操作的完成,若是没完成,调用incwaiters方法:

1 private void incwaiters() {
2     if (waiters == short.max_value) {
3         throw new illegalstateexception("too many waiters: " + this);
4     }
5     ++waiters;
6 }

在小于short.max_value的情况下,对waiters自增,
然后使用wait将自身阻塞,等待被唤醒
所以在之前setvalue0时,checknotifywaiters操作会notifyall,
由此可以知道sync方法的作用:在某一线程中调用sync方法会使得当前线程被阻塞,只有当异步操作执完毕,通过上面的set方法改变状态后,才会调用checknotifywaiters方法唤醒当前线程。

当从阻塞中被唤醒后调用decwaiters方法:

1 private void decwaiters() {
2     --waiters;
3 }

使得waiters自减
通过这样一种自旋方式,一直等到isdone成立,结束自旋,进而结束await方法,然后调用rethrowiffailed方法:

1 private void rethrowiffailed() {
2     throwable cause = cause();
3     if (cause == null) {
4         return;
5     }
6 
7     platformdependent.throwexception(cause);
8 }

根据异步操作是否有异常,进而使用platformdependent抛出异常。


至此netty中的channelfuture和channelpromise分析到此全部结束。

如对本文有疑问, 点击进行留言回复!!

相关文章:

验证码:
移动技术网