当前位置: 移动技术网 > IT编程>开发语言>Java > RateLimiter 源码分析

RateLimiter 源码分析

2019年07月19日  | 移动技术网IT编程  | 我要评论

俗话说得好,缓存,限流和降级是系统的三把利剑。刚好项目中每天早上导出数据时因调订单接口频率过高,订单系统担心会对用户侧的使用造成影响,让我们对调用限速一下,所以就正好用上了。 

常用的限流算法有2种:漏桶算法令牌桶算法

漏桶算法

漏桶算法:请求先进入“桶”中,然后桶以一定的速率处理请求。如果请求的速率过快会导致桶溢出。根据描述可以知道,漏桶算法会强制限制请求处理的速度。任你请求的再快还是再慢,我都是以这种速率来处理。 

但是对于很多情况下,除了要求能够限制平均处理速度外,还要求能允许一定程度的的突发情况。这样的话,漏桶算法就不合适了,用令牌桶算法更合适。

令牌桶算法

令牌桶算法的原理是:系统以恒定的速率往桶里丢一定数量的令牌,请求只有拿到了令牌才能处理。当桶里没有令牌时便可拒绝服务。 

guava中的ratelimiter便是实现的令牌桶算法,同时能支持一定程度的突发请求。

private static ratelimiter one=ratelimiter.create(2);//每秒2个
  private static ratelimiter two=ratelimiter.create(2);//每秒2个
  private ratelimitutil(){};
  public static void acquire(ratelimiter r,int num){
    double time =r.acquire(num);
    system.out.println("wait time="+time);
  }
  public static void main(string[] args) throws interruptedexception {
    acquire(one,1);
    acquire(one,1);
    acquire(one,1);
    system.out.println("-----");
    acquire(two,10);
    acquire(two,1);
  }

输出结果:

wait time=0.0
wait time=0.499163
wait time=0.489308
-----
wait time=0.0
wait time=4.497819

可以看到,我们以每秒2个请求的速度生成令牌。对one来说,当第2次和第3次获取请求的时候,等待的时间加起来就差不多刚好是1秒。对two来说,当第一次获取了10个令牌之后,第二次获取1个请求,就差不多等待5s(10/2=5)。可以看到,guava通过限制后面请求的等待时间,来支持一定程度的突发请求。

接下来,就是通过源码来解析它! 

当我第一次看到令牌桶的算法描述的时候,我还以为真是有一个线程每隔x秒往一个类似计数器的地方加数字呢…. 

guava的限流算法有2种模式,一种是稳定速度,还有一种是生成令牌的速度慢慢提升直到维持在一个稳定的速度。2种模式原理类似,只是在具体等待多久的时间计算上有区别。以下就专门指稳定速度的模式。

先来看看它的acquire()方法:

public double acquire(int permits) {
  long microstowait = reserve(permits);//先计算获取这些请求需要让线程等待多长时间
  stopwatch.sleepmicrosuninterruptibly(microstowait);//让线程阻塞microtowait微秒长的时间
  return 1.0 * microstowait / seconds.tomicros(1l);//返回阻塞的时间
 }

主要分3步: 

1. 根据limiter创建时传入的参数,计算出生成这些数量的令牌需要多长的时间。 

2. 让线程阻塞microtowait这么长的时间(单位:微秒) 

3. 再返回阻塞了多久,单位:秒

具体它是怎么计算需要多长时间的呢?让我们来看看reserve(permits)方法。

final long reserve(int permits) {
  checkpermits(permits);//检查参数是否合法
  synchronized (mutex()) {
   return reserveandgetwaitlength(permits, stopwatch.readmicros());
  }
 }
    ↓
    ↓
    ↓
 final long reserveandgetwaitlength(int permits, long nowmicros) {
  long momentavailable = reserveearliestavailable(permits, nowmicros);
  return max(momentavailable - nowmicros, 0);
 }
    ↓
    ↓
    ↓
 final long reserveearliestavailable(int requiredpermits, long nowmicros) {
  resync(nowmicros);//here
  long returnvalue = nextfreeticketmicros;
  double storedpermitstospend = min(requiredpermits, this.storedpermits);
  double freshpermits = requiredpermits - storedpermitstospend;
  long waitmicros = storedpermitstowaittime(this.storedpermits, storedpermitstospend)
    + (long) (freshpermits * stableintervalmicros);
  this.nextfreeticketmicros = nextfreeticketmicros + waitmicros;
  this.storedpermits -= storedpermitstospend;
  return returnvalue;
 }

最终调用的是reserveearliestavailable方法。先看看resync(nowmicros)方法。

private void resync(long nowmicros) {
  // if nextfreeticket is in the past, resync to now
  if (nowmicros > nextfreeticketmicros) {
   storedpermits = min(maxpermits,
     storedpermits + (nowmicros - nextfreeticketmicros) / stableintervalmicros);
   nextfreeticketmicros = nowmicros;
  }
 }

nextfreeticketmicros的意思是:下次获取的时候需要减去的时间。如果是第一次调用accquire()方法,那nowmicros - nextfreeticketmicros 就是从初始化(初始化的时候会给nextfreeticketmicros 赋值一次,具体可以看ratelimiter的构造器)到第一次请求,这中间发生的时间。 

这个方法的意思,如果当前时间比上一轮设置的下次获取的时间大(因为存在提前获取的情况,比如上次直接获取了10个,那上轮设置的nextfreeticketmicros就是上一轮的时间+5s。后面会提到),那就计算这个中间理论上能生成多少的令牌。比如这中间隔了1秒钟,然后stableintervalmicros=5000(稳定生成速度的情况下),那么,就这中间就可以生成2个令牌。再加上它原先存储的storedpermits个,如果比maxpermits大,那最大也只能存maxpermits这么多。如果比maxpermits小,那就是storedpermits=原先存的+这中间生成的数量。同时记录下下次获取的时候需要减去的时间,也就是当前时间 (nextfreeticketmicros )。 

接下来继续看reserveearliestavailable方法:

final long reserveearliestavailable(int requiredpermits, long nowmicros) { //1
  resync(nowmicros);   //2
  long returnvalue = nextfreeticketmicros;//3
  double storedpermitstospend = min(requiredpermits, this.storedpermits);//4
  double freshpermits = requiredpermits - storedpermitstospend;//5
  long waitmicros = storedpermitstowaittime(this.storedpermits, storedpermitstospend)
    + (long) (freshpermits * stableintervalmicros);//6
  this.nextfreeticketmicros = nextfreeticketmicros + waitmicros;//7
  this.storedpermits -= storedpermitstospend;//8
  return returnvalue;//9
 }

我们一行一行来看: 

第二行设置好之后。第3行中将下次获取的时候需要减去的时间作为返回值(这点很重要)。 

这2句是什么意思呢? 

其实这2句就是使得ratelimiter能一定程度的突发请求的原因。假设requiredpermits=10,而我们能存的storedpermits=2,那么freshpermits=8,也就是多取了8个。而第6行就是计算这多取的8个需要多长时间才能生成?需要3秒。那么,就将这3秒钟加到我们前面赋值的“下次获取的时候需要减去的时间 ”。 

比如在05秒的时候一次性获取了10个,那么,第7行的意思就是nextfreeticketmicros=13s对应的系统的毫秒数。然后storedpermits就是-8。当过了1秒钟,下一次请求来调用acquire(1)的时候,resync方法中由于nowmicros

final long reserveandgetwaitlength(int permits, long nowmicros) {
  long momentavailable = reserveearliestavailable(permits, nowmicros);
  return max(momentavailable - nowmicros, 0);//取较大的值
 }

也就是说,reserveandgetwaitlength会返回max(13-6,0),也就是7。而该方法的返回值又是用于sleep线程的,也就是我们在一开始看到的:

public double acquire(int permits) {
  long microstowait = reserve(permits);
  stopwatch.sleepmicrosuninterruptibly(microstowait);
  return 1.0 * microstowait / seconds.tomicros(1l);
 }

总结起来,最主要的是nowmicros,nextfreeticketmicros这2个值。nextfreeticketmicros在一开始构造器执行的时候会赋值一次为构造器执行的时间。当第一次调用accquire()的时候,resync会被执行,然后在accquire()中将nextfreeticketmicros设置为当前时间。但是,需要注意的是,在reserveearliestavailable中会根据请求的令牌数和当前存储的令牌数进行比较。如果请求的令牌数很大,则会计算出生成这些多余的令牌需要的时间,并加在nextfreeticketmicros上,从而保证下次调用accquire()的时候,根据nextfreeticketmicros和当时的nowmicros相减,若>0,则需要等到对应的时间。也就能应对流量的突增情况了。 

所以最重要的是nextfreeticketmicros,它记录了你这次获取的时候,能够开始生成令牌的时间。比如当前是05s,那若nextfreeticketmicros=10,表示它要到10s才能开始生成令牌,谁叫前面的多拿了这么多呢。至于它这次是多拿了还是只是拿一个令牌,等待时间都是这么多。如果这次又多拿了,那下次就等待更久!

private static ratelimiter too=ratelimiter.create(2);//每秒2个
  private ratelimitutil(){};
  public static void acquire(ratelimiter r,int num){
    double time =r.acquire(num);
    system.out.println("wait time="+time);
  }
  public static void main(string[] args) throws interruptedexception {
    acquire(too,1);
    acquire(too,10);//只等待了0.5秒就获取了10个
    acquire(too,10);//等待了5秒就获取了10个
    acquire(too,1);//虽然只获取1个,也是等待5秒
  }

总结

以上就是本文关于ratelimiter 常用方法以及源码分析的全部内容,希望对大家有所帮助。感兴趣的朋友可以参阅:关于openfire集群源码的分析 、 spring springmvc在启动完成后执行方法源码解析 、 java查看本机端口是否被占用源码等。感谢大家对移动技术网网站的支持!

如对本文有疑问, 点击进行留言回复!!

相关文章:

验证码:
移动技术网