当前位置: 移动技术网 > IT编程>开发语言>Java > java 中ThreadPoolExecutor原理分析

java 中ThreadPoolExecutor原理分析

2019年07月22日  | 移动技术网IT编程  | 我要评论

java 中threadpoolexecutor原理分析

线程池简介

java线程池是开发中常用的工具,当我们有异步、并行的任务要处理时,经常会用到线程池,或者在实现一个服务器时,也需要使用线程池来接收连接处理请求。

线程池使用

jdk中提供的线程池实现位于java.util.concurrent.threadpoolexecutor。在使用时,通常使用executorservice接口,它提供了submit,invokeall,shutdown等通用的方法。

在线程池配置方面,executors类中提供了一些静态方法能够提供一些常用场景的线程池,如newfixedthreadpool,newcachedthreadpool,newsinglethreadexecutor等,这些方法最终都是调用到了threadpoolexecutor的构造函数。

threadpoolexecutor的包含所有参数的构造函数是

/**
   * @param corepoolsize the number of threads to keep in the pool, even
   *    if they are idle, unless {@code allowcorethreadtimeout} is set
   * @param maximumpoolsize the maximum number of threads to allow in the
   *    pool
   * @param keepalivetime when the number of threads is greater than
   *    the core, this is the maximum time that excess idle threads
   *    will wait for new tasks before terminating.
   * @param unit the time unit for the {@code keepalivetime} argument
   * @param workqueue the queue to use for holding tasks before they are
   *    executed. this queue will hold only the {@code runnable}
   *    tasks submitted by the {@code execute} method.
   * @param threadfactory the factory to use when the executor
   *    creates a new thread
   * @param handler the handler to use when execution is blocked
   *    because the thread bounds and queue capacities are reached
  public threadpoolexecutor(int corepoolsize,
               int maximumpoolsize,
               long keepalivetime,
               timeunit unit,
               blockingqueue<runnable> workqueue,
               threadfactory threadfactory,
               rejectedexecutionhandler handler) {
    if (corepoolsize < 0 ||
      maximumpoolsize <= 0 ||
      maximumpoolsize < corepoolsize ||
      keepalivetime < 0)
      throw new illegalargumentexception();
    if (workqueue == null || threadfactory == null || handler == null)
      throw new nullpointerexception();
    this.corepoolsize = corepoolsize;
    this.maximumpoolsize = maximumpoolsize;
    this.workqueue = workqueue;
    this.keepalivetime = unit.tonanos(keepalivetime);
    this.threadfactory = threadfactory;
    this.handler = handler;
  }
  • corepoolsize设置线程池的核心线程数,当添加新任务时,如果线程池中的线程数小于corepoolsize,则不管当前是否有线程闲置,都会创建一个新的线程来执行任务。
  • maximunpoolsize是线程池中允许的最大的线程数
  • workqueue用于存放排队的任务
  • keepalivetime是大于corepoolsize的线程闲置的超时时间
  • handler用于在任务逸出、线程池关闭时的任务处理 ,线程池的线程增长策略为,当前线程数小于corepoolsize时,新增线程,当线程数=corepoolsize且corepoolsize时,只有在workqueue不能存放新的任务时创建新线程,超出的线程在闲置keepalivetime后销毁。

实现(基于jdk1.8)

threadpoolexecutor中保存的状态有

当前线程池状态, 包括running,shutdown,stop,tidying,terminated。

当前有效的运行线程的数量。

将这两个状态放到一个int变量中,前三位作为线程池状态,后29位作为线程数量。

例如0b11100000000000000000000000000001, 表示running, 一个线程。

通过hashset来存储工作者集合,访问该hashset前必须先获取保护状态的mainlock:reentrantlock

submit、execute

execute的执行方式为,首先检查当前worker数量,如果小于corepoolsize,则尝试add一个core worker。线程池在维护线程数量以及状态检查上做了大量检测。

public void execute(runnable command) {
    int c = ctl.get();
    // 如果当期数量小于corepoolsize
    if (workercountof(c) < corepoolsize) {
      // 尝试增加worker
      if (addworker(command, true))
        return;
      c = ctl.get();
    }
    // 如果线程池正在运行并且成功添加到工作队列中
    if (isrunning(c) && workqueue.offer(command)) {
      // 再次检查状态,如果已经关闭则执行拒绝处理
      int recheck = ctl.get();
      if (! isrunning(recheck) && remove(command))
        reject(command);
      // 如果工作线程都down了
      else if (workercountof(recheck) == 0)
        addworker(null, false);
    }
    else if (!addworker(command, false))
      reject(command);
  }

addworker方法实现

private boolean addworker(runnable firsttask, boolean core) {
    retry:
    for (;;) {
      int c = ctl.get();
      int rs = runstateof(c);
      // check if queue empty only if necessary.
      if (rs >= shutdown &&
        ! (rs == shutdown &&
          firsttask == null &&
          ! workqueue.isempty()))
        return false;
      for (;;) {
        int wc = workercountof(c);
        if (wc >= capacity ||
          wc >= (core ? corepoolsize : maximumpoolsize))
          return false;
        if (compareandincrementworkercount(c))
          break retry;
        c = ctl.get(); // re-read ctl
        if (runstateof(c) != rs)
          continue retry;
        // else cas failed due to workercount change; retry inner loop
      }
    }
    boolean workerstarted = false;
    boolean workeradded = false;
    worker w = null;
    try {
      w = new worker(firsttask);
      final thread t = w.thread;
      if (t != null) {
        final reentrantlock mainlock = this.mainlock;
        mainlock.lock();
        try {
          // recheck while holding lock.
          // back out on threadfactory failure or if
          // shut down before lock acquired.
          int rs = runstateof(ctl.get());
          if (rs < shutdown ||
            (rs == shutdown && firsttask == null)) {
            if (t.isalive()) // precheck that t is startable
              throw new illegalthreadstateexception();
            workers.add(w);
            int s = workers.size();
            if (s > largestpoolsize)
              largestpoolsize = s;
            workeradded = true;
          }
        } finally {
          mainlock.unlock();
        }
        if (workeradded) {
          // 如果添加成功,则启动该线程,执行worker的run方法,worker的run方法执行外部的runworker(worker)
          t.start();
          workerstarted = true;
        }
      }
    } finally {
      if (! workerstarted)
        addworkerfailed(w);
    }
    return workerstarted;
  }

worker类继承了abstractqueuedsynchronizer获得了同步等待这样的功能。

private final class worker
    extends abstractqueuedsynchronizer
    implements runnable
  {
    /**
     * this class will never be serialized, but we provide a
     * serialversionuid to suppress a javac warning.
     */
    private static final long serialversionuid = 6138294804551838833l;
    /** thread this worker is running in. null if factory fails. */
    final thread thread;
    /** initial task to run. possibly null. */
    runnable firsttask;
    /** per-thread task counter */
    volatile long completedtasks;
    /**
     * creates with given first task and thread from threadfactory.
     * @param firsttask the first task (null if none)
     */
    worker(runnable firsttask) {
      setstate(-1); // inhibit interrupts until runworker
      this.firsttask = firsttask;
      this.thread = getthreadfactory().newthread(this);
    }
    /** delegates main run loop to outer runworker */
    public void run() {
      runworker(this);
    }
    // lock methods
    //
    // the value 0 represents the unlocked state.
    // the value 1 represents the locked state.
    protected boolean isheldexclusively() {
      return getstate() != 0;
    }
    protected boolean tryacquire(int unused) {
      if (compareandsetstate(0, 1)) {
        setexclusiveownerthread(thread.currentthread());
        return true;
      }
      return false;
    }
    protected boolean tryrelease(int unused) {
      setexclusiveownerthread(null);
      setstate(0);
      return true;
    }
    public void lock()    { acquire(1); }
    public boolean trylock() { return tryacquire(1); }
    public void unlock()   { release(1); }
    public boolean islocked() { return isheldexclusively(); }
    void interruptifstarted() {
      thread t;
      if (getstate() >= 0 && (t = thread) != null && !t.isinterrupted()) {
        try {
          t.interrupt();
        } catch (securityexception ignore) {
        }
      }
    }

runworker(worker)是worker的轮询执行逻辑,不断地从工作队列中获取任务并执行它们。worker每次执行任务前需要进行lock,防止在执行任务时被interrupt。

final void runworker(worker w) {
    thread wt = thread.currentthread();
    runnable task = w.firsttask;
    w.firsttask = null;
    w.unlock(); // allow interrupts
    boolean completedabruptly = true;
    try {
      while (task != null || (task = gettask()) != null) {
        w.lock();
        // if pool is stopping, ensure thread is interrupted;
        // if not, ensure thread is not interrupted. this
        // requires a recheck in second case to deal with
        // shutdownnow race while clearing interrupt
        if ((runstateatleast(ctl.get(), stop) ||
           (thread.interrupted() &&
           runstateatleast(ctl.get(), stop))) &&
          !wt.isinterrupted())
          wt.interrupt();
        try {
          beforeexecute(wt, task);
          throwable thrown = null;
          try {
            task.run();
          } catch (runtimeexception x) {
            thrown = x; throw x;
          } catch (error x) {
            thrown = x; throw x;
          } catch (throwable x) {
            thrown = x; throw new error(x);
          } finally {
            afterexecute(task, thrown);
          }
        } finally {
          task = null;
          w.completedtasks++;
          w.unlock();
        }
      }
      completedabruptly = false;
    } finally {
      processworkerexit(w, completedabruptly);
    }
  }

threadpoolexecutor的submit方法中将callable包装成futuretask后交给execute方法。

futuretask

futuretask继承于runnable和future,futuretask定义的几个状态为
new, 尚未执行
completing, 正在执行
normal, 正常执行完成得到结果
exceptional, 执行抛出异常
cancelled, 执行被取消
interrupting,执行正在被中断
interrupted, 已经中断。

其中关键的get方法

public v get() throws interruptedexception, executionexception {
    int s = state;
    if (s <= completing)
      s = awaitdone(false, 0l);
    return report(s);
  }

先获取当前状态,如果还未执行完成并且正常,则进入等待结果流程。在awaitdone不断循环获取当前状态,如果没有结果,则将自己通过cas的方式添加到等待链表的头部,如果设置了超时,则locksupport.parknanos到指定的时间。

static final class waitnode {
    volatile thread thread;
    volatile waitnode next;
    waitnode() { thread = thread.currentthread(); }
  }
private int awaitdone(boolean timed, long nanos)
    throws interruptedexception {
    final long deadline = timed ? system.nanotime() + nanos : 0l;
    waitnode q = null;
    boolean queued = false;
    for (;;) {
      if (thread.interrupted()) {
        removewaiter(q);
        throw new interruptedexception();
      }
      int s = state;
      if (s > completing) {
        if (q != null)
          q.thread = null;
        return s;
      }
      else if (s == completing) // cannot time out yet
        thread.yield();
      else if (q == null)
        q = new waitnode();
      else if (!queued)
        queued = unsafe.compareandswapobject(this, waitersoffset,
                           q.next = waiters, q);
      else if (timed) {
        nanos = deadline - system.nanotime();
        if (nanos <= 0l) {
          removewaiter(q);
          return state;
        }
        locksupport.parknanos(this, nanos);
      }
      else
        locksupport.park(this);
    }
  }

futuretask的run方法是执行任务并设置结果的位置,首先判断当前状态是否为new并且将当前线程设置为执行线程,然后调用callable的call获取结果后设置结果修改futuretask状态。

public void run() {
    if (state != new ||
      !unsafe.compareandswapobject(this, runneroffset,
                     null, thread.currentthread()))
      return;
    try {
      callable<v> c = callable;
      if (c != null && state == new) {
        v result;
        boolean ran;
        try {
          result = c.call();
          ran = true;
        } catch (throwable ex) {
          result = null;
          ran = false;
          setexception(ex);
        }
        if (ran)
          set(result);
      }
    } finally {
      // runner must be non-null until state is settled to
      // prevent concurrent calls to run()
      runner = null;
      // state must be re-read after nulling runner to prevent
      // leaked interrupts
      int s = state;
      if (s >= interrupting)
        handlepossiblecancellationinterrupt(s);
    }
  }

感谢阅读,希望能帮助到大家,谢谢大家对本站的支持!

如对本文有疑问, 点击进行留言回复!!

相关文章:

验证码:
移动技术网