当前位置: 移动技术网 > IT编程>移动开发>Android > Android多种方式实现相机圆形预览的示例代码

Android多种方式实现相机圆形预览的示例代码

2019年09月09日  | 移动技术网IT编程  | 我要评论

效果图如下:

一、为预览控件设置圆角

为控件设置viewoutlineprovider

public roundtextureview(context context, attributeset attrs) {
  super(context, attrs);
  setoutlineprovider(new viewoutlineprovider() {
    @override
    public void getoutline(view view, outline outline) {
      rect rect = new rect(0, 0, view.getmeasuredwidth(), view.getmeasuredheight());
      outline.setroundrect(rect, radius);
    }
  });
  setcliptooutline(true);
}

在需要时修改圆角值并更新

public void setradius(int radius) {
  this.radius = radius;
}

public void turnround() {
  invalidateoutline();
}

即可根据设置的圆角值更新控件显示的圆角大小。当控件为正方形,且圆角值为边长的一半,显示的就是圆形。

二、实现正方形预览

1. 设备支持1:1预览尺寸

首先介绍一种简单但是局限性较大的实现方式:将相机预览尺寸和预览控件的大小都调整为1:1。
一般android设备都支持多种预览尺寸,以samsung tab s3为例

在使用camera api时,其支持的预览尺寸如下:

2019-08-02 13:16:08.669 16407-16407/com.wsy.glcamerademo i/camerahelper: supportedpreviewsize: 1920x1080
2019-08-02 13:16:08.669 16407-16407/com.wsy.glcamerademo i/camerahelper: supportedpreviewsize: 1280x720
2019-08-02 13:16:08.669 16407-16407/com.wsy.glcamerademo i/camerahelper: supportedpreviewsize: 1440x1080
2019-08-02 13:16:08.669 16407-16407/com.wsy.glcamerademo i/camerahelper: supportedpreviewsize: 1088x1088
2019-08-02 13:16:08.670 16407-16407/com.wsy.glcamerademo i/camerahelper: supportedpreviewsize: 1056x864
2019-08-02 13:16:08.670 16407-16407/com.wsy.glcamerademo i/camerahelper: supportedpreviewsize: 960x720
2019-08-02 13:16:08.670 16407-16407/com.wsy.glcamerademo i/camerahelper: supportedpreviewsize: 720x480
2019-08-02 13:16:08.670 16407-16407/com.wsy.glcamerademo i/camerahelper: supportedpreviewsize: 640x480
2019-08-02 13:16:08.670 16407-16407/com.wsy.glcamerademo i/camerahelper: supportedpreviewsize: 352x288
2019-08-02 13:16:08.670 16407-16407/com.wsy.glcamerademo i/camerahelper: supportedpreviewsize: 320x240
2019-08-02 13:16:08.670 16407-16407/com.wsy.glcamerademo i/camerahelper: supportedpreviewsize: 176x144

其中1:1的预览尺寸为:1088x1088。

在使用camera2 api时,其支持的预览尺寸(其实也包含了picturesize)如下:

2019-08-02 13:19:24.980 16768-16768/com.wsy.glcamerademo i/camera2helper: getbestsupportedsize: 4128x3096
2019-08-02 13:19:24.980 16768-16768/com.wsy.glcamerademo i/camera2helper: getbestsupportedsize: 4128x2322
2019-08-02 13:19:24.980 16768-16768/com.wsy.glcamerademo i/camera2helper: getbestsupportedsize: 3264x2448
2019-08-02 13:19:24.980 16768-16768/com.wsy.glcamerademo i/camera2helper: getbestsupportedsize: 3264x1836
2019-08-02 13:19:24.980 16768-16768/com.wsy.glcamerademo i/camera2helper: getbestsupportedsize: 3024x3024
2019-08-02 13:19:24.980 16768-16768/com.wsy.glcamerademo i/camera2helper: getbestsupportedsize: 2976x2976
2019-08-02 13:19:24.980 16768-16768/com.wsy.glcamerademo i/camera2helper: getbestsupportedsize: 2880x2160
2019-08-02 13:19:24.981 16768-16768/com.wsy.glcamerademo i/camera2helper: getbestsupportedsize: 2592x1944
2019-08-02 13:19:24.981 16768-16768/com.wsy.glcamerademo i/camera2helper: getbestsupportedsize: 2560x1920
2019-08-02 13:19:24.981 16768-16768/com.wsy.glcamerademo i/camera2helper: getbestsupportedsize: 2560x1440
2019-08-02 13:19:24.981 16768-16768/com.wsy.glcamerademo i/camera2helper: getbestsupportedsize: 2560x1080
2019-08-02 13:19:24.981 16768-16768/com.wsy.glcamerademo i/camera2helper: getbestsupportedsize: 2160x2160
2019-08-02 13:19:24.981 16768-16768/com.wsy.glcamerademo i/camera2helper: getbestsupportedsize: 2048x1536
2019-08-02 13:19:24.981 16768-16768/com.wsy.glcamerademo i/camera2helper: getbestsupportedsize: 2048x1152
2019-08-02 13:19:24.981 16768-16768/com.wsy.glcamerademo i/camera2helper: getbestsupportedsize: 1936x1936
2019-08-02 13:19:24.981 16768-16768/com.wsy.glcamerademo i/camera2helper: getbestsupportedsize: 1920x1080
2019-08-02 13:19:24.981 16768-16768/com.wsy.glcamerademo i/camera2helper: getbestsupportedsize: 1440x1080
2019-08-02 13:19:24.981 16768-16768/com.wsy.glcamerademo i/camera2helper: getbestsupportedsize: 1280x960
2019-08-02 13:19:24.981 16768-16768/com.wsy.glcamerademo i/camera2helper: getbestsupportedsize: 1280x720
2019-08-02 13:19:24.981 16768-16768/com.wsy.glcamerademo i/camera2helper: getbestsupportedsize: 960x720
2019-08-02 13:19:24.981 16768-16768/com.wsy.glcamerademo i/camera2helper: getbestsupportedsize: 720x480
2019-08-02 13:19:24.981 16768-16768/com.wsy.glcamerademo i/camera2helper: getbestsupportedsize: 640x480
2019-08-02 13:19:24.982 16768-16768/com.wsy.glcamerademo i/camera2helper: getbestsupportedsize: 320x240
2019-08-02 13:19:24.982 16768-16768/com.wsy.glcamerademo i/camera2helper: getbestsupportedsize: 176x144

其中1:1的预览尺寸为:3024x3024、2976x2976、2160x2160、1936x1936。
只要我们选择1:1的预览尺寸,再将预览控件设置为正方形,即可实现正方形预览;
再通过设置预览控件的圆角为边长的一半,即可实现圆形预览。2. 设备不支持1:1预览尺寸的情况

选择1:1预览尺寸的缺陷分析

分辨率局限性
上述说到,我们可以选择1:1的预览尺寸进行预览,但是局限性较高,
可选择范围都很小。如果相机不支持1:1的预览尺寸,这个方案就不可行了。

资源消耗
以samsung tab s3为例,该设备使用camera2 api时,支持的正方形预览尺寸都很大,在进行图像处理等操作时将占用较多系统资源。

处理不支持1:1预览尺寸的情况

添加一个1:1尺寸的viewgroup
将textureview放入viewgroup
设置textureview的margin值以达到显示中心正方形区域的效果

示意图

示例代码

//将预览控件和预览尺寸比例保持一致,避免拉伸
{
  framelayout.layoutparams textureviewlayoutparams = (framelayout.layoutparams) textureview.getlayoutparams();
  int newheight = 0;
  int newwidth = textureviewlayoutparams.width;
  //横屏
  if (displayorientation % 180 == 0) {
    newheight = textureviewlayoutparams.width * previewsize.height / previewsize.width;
  }
  //竖屏
  else {
    newheight = textureviewlayoutparams.width * previewsize.width / previewsize.height;
  }
  ////当不是正方形预览的情况下,添加一层viewgroup限制view的显示区域
  if (newheight != textureviewlayoutparams.height) {
    insertframelayout = new roundframelayout(coverbyparentcameraactivity.this);
    int sidelength = math.min(newwidth, newheight);
    framelayout.layoutparams layoutparams = new framelayout.layoutparams(sidelength, sidelength);
    insertframelayout.setlayoutparams(layoutparams);
    framelayout parentview = (framelayout) textureview.getparent();
    parentview.removeview(textureview);
    parentview.addview(insertframelayout);

    insertframelayout.addview(textureview);
    framelayout.layoutparams newtextureviewlayoutparams = new framelayout.layoutparams(newwidth, newheight);
    //横屏
    if (displayorientation % 180 == 0) {
      newtextureviewlayoutparams.leftmargin = ((newheight - newwidth) / 2);
    }
    //竖屏
    else {
      newtextureviewlayoutparams.topmargin = -(newheight - newwidth) / 2;
    }
    textureview.setlayoutparams(newtextureviewlayoutparams);
  }
}

三、使用glsurfaceview进行自定义程度更高的预览

使用上面的方法操作已经可完成正方形和圆形预览,但是仅适用于原生相机,当我们的数据源并非是原生相机的情况时如何进行圆形预览?接下来介绍使用glsurfaceview显示nv21的方案,完全是自己实现预览数据的绘制。

1. glsurfaceview使用流程

opengl渲染yuv数据流程

其中的重点是渲染器(renderer)的编写,renderer的介绍如下:

/**
 * a generic renderer interface.
 * <p>
 * the renderer is responsible for making opengl calls to render a frame.
 * <p>
 * glsurfaceview clients typically create their own classes that implement
 * this interface, and then call {@link glsurfaceview#setrenderer} to
 * register the renderer with the glsurfaceview.
 * <p>
 *
 * <div class="special reference">
 * <h3>developer guides</h3>
 * <p>for more information about how to use opengl, read the
 * <a href="{@docroot}guide/topics/graphics/opengl.html" rel="external nofollow" >opengl</a> developer guide.</p>
 * </div>
 *
 * <h3>threading</h3>
 * the renderer will be called on a separate thread, so that rendering
 * performance is decoupled from the ui thread. clients typically need to
 * communicate with the renderer from the ui thread, because that's where
 * input events are received. clients can communicate using any of the
 * standard java techniques for cross-thread communication, or they can
 * use the {@link glsurfaceview#queueevent(runnable)} convenience method.
 * <p>
 * <h3>egl context lost</h3>
 * there are situations where the egl rendering context will be lost. this
 * typically happens when device wakes up after going to sleep. when
 * the egl context is lost, all opengl resources (such as textures) that are
 * associated with that context will be automatically deleted. in order to
 * keep rendering correctly, a renderer must recreate any lost resources
 * that it still needs. the {@link #onsurfacecreated(gl10, eglconfig)} method
 * is a convenient place to do this.
 *
 *
 * @see #setrenderer(renderer)
 */
public interface renderer {
  /**
   * called when the surface is created or recreated.
   * <p>
   * called when the rendering thread
   * starts and whenever the egl context is lost. the egl context will typically
   * be lost when the android device awakes after going to sleep.
   * <p>
   * since this method is called at the beginning of rendering, as well as
   * every time the egl context is lost, this method is a convenient place to put
   * code to create resources that need to be created when the rendering
   * starts, and that need to be recreated when the egl context is lost.
   * textures are an example of a resource that you might want to create
   * here.
   * <p>
   * note that when the egl context is lost, all opengl resources associated
   * with that context will be automatically deleted. you do not need to call
   * the corresponding "gldelete" methods such as gldeletetextures to
   * manually delete these lost resources.
   * <p>
   * @param gl the gl interface. use <code>instanceof</code> to
   * test if the interface supports gl11 or higher interfaces.
   * @param config the eglconfig of the created surface. can be used
   * to create matching pbuffers.
   */
  void onsurfacecreated(gl10 gl, eglconfig config);

  /**
   * called when the surface changed size.
   * <p>
   * called after the surface is created and whenever
   * the opengl es surface size changes.
   * <p>
   * typically you will set your viewport here. if your camera
   * is fixed then you could also set your projection matrix here:
   * <pre class="prettyprint">
   * void onsurfacechanged(gl10 gl, int width, int height) {
   *   gl.glviewport(0, 0, width, height);
   *   // for a fixed camera, set the projection too
   *   float ratio = (float) width / height;
   *   gl.glmatrixmode(gl10.gl_projection);
   *   gl.glloadidentity();
   *   gl.glfrustumf(-ratio, ratio, -1, 1, 1, 10);
   * }
   * </pre>
   * @param gl the gl interface. use <code>instanceof</code> to
   * test if the interface supports gl11 or higher interfaces.
   * @param width
   * @param height
   */
  void onsurfacechanged(gl10 gl, int width, int height);

  /**
   * called to draw the current frame.
   * <p>
   * this method is responsible for drawing the current frame.
   * <p>
   * the implementation of this method typically looks like this:
   * <pre class="prettyprint">
   * void ondrawframe(gl10 gl) {
   *   gl.glclear(gl10.gl_color_buffer_bit | gl10.gl_depth_buffer_bit);
   *   //... other gl calls to render the scene ...
   * }
   * </pre>
   * @param gl the gl interface. use <code>instanceof</code> to
   * test if the interface supports gl11 or higher interfaces.
   */
  void ondrawframe(gl10 gl);
}



void onsurfacecreated(gl10 gl, eglconfig config)
在surface创建或重建的情况下回调

void onsurfacechanged(gl10 gl, int width, int height)
在surface的大小发生变化的情况下回调

void ondrawframe(gl10 gl)
在这里实现绘制操作。当我们设置的rendermode为rendermode_continuously时,该函数将不断地执行;
当我们设置的rendermode为rendermode_when_dirty时,将只在创建完成和调用requestrender后才执行。一般我们选择rendermode_when_dirty渲染模式,避免过度绘制。

一般情况下,我们会自己实现一个renderer,然后为glsurfaceview设置renderer,可以说,renderer的编写是整个流程的核心步骤。以下是在void onsurfacecreated(gl10 gl, eglconfig config)进行的初始化操作和在void ondrawframe(gl10 gl)进行的绘制操作的流程图:

渲染yuv数据的renderer

2. 具体实现

坐标系介绍

android view坐标系

opengl世界坐标系

如图所示,和android的view坐标系不同,opengl的坐标系是笛卡尔坐标系。
android view的坐标系以左上角为原点,向右x递增,向下y递增;
而opengl坐标系以中心为原点,向右x递增,向上y递增。

着色器编写

/**
 * 顶点着色器
 */
private static string vertex_shader =
    "  attribute vec4 attr_position;\n" +
        "  attribute vec2 attr_tc;\n" +
        "  varying vec2 tc;\n" +
        "  void main() {\n" +
        "    gl_position = attr_position;\n" +
        "    tc = attr_tc;\n" +
        "  }";

/**
 * 片段着色器
 */
private static string frag_shader =
    "  varying vec2 tc;\n" +
        "  uniform sampler2d ysampler;\n" +
        "  uniform sampler2d usampler;\n" +
        "  uniform sampler2d vsampler;\n" +
        "  const mat3 convertmat = mat3( 1.0, 1.0, 1.0, -0.001, -0.3441, 1.772, 1.402, -0.7141, -0.58060);\n" +
        "  void main()\n" +
        "  {\n" +
        "    vec3 yuv;\n" +
        "    yuv.x = texture2d(ysampler, tc).r;\n" +
        "    yuv.y = texture2d(usampler, tc).r - 0.5;\n" +
        "    yuv.z = texture2d(vsampler, tc).r - 0.5;\n" +
        "    gl_fragcolor = vec4(convertmat * yuv, 1.0);\n" +
        "  }";


内建变量解释

gl_position

vertex_shader代码里的gl_position代表绘制的空间坐标。由于我们是二维绘制,所以直接传入opengl二维坐标系的左下(-1,-1)、右下(1,-1)、左上(-1,1)、右上(1,1),也就是{-1,-1,1,-1,-1,1,1,1}

gl_fragcolor

frag_shader代码里的gl_fragcolor代表单个片元的颜色

其他变量解释

ysampler、usampler、vsampler

分别代表y、u、v纹理采样器

convertmat

根据以下公式:

r = y + 1.402 (v - 128)
g = y - 0.34414 (u - 128) - 0.71414 (v - 128)
b = y + 1.772 (u - 128)

我们可得到一个yuv转rgb的矩阵

1.0,  1.0,  1.0, 
0,   -0.344, 1.77, 
1.403, -0.714, 0 

部分类型、函数的解释

vec3、vec4

分别代表三维向量、四维向量。

vec4 texture2d(sampler2d sampler, vec2 coord)

以指定的矩阵将采样器的图像纹理转换为颜色值;如:
texture2d(ysampler, tc).r获取到的是y数据,
texture2d(usampler, tc).r获取到的是u数据,
texture2d(vsampler, tc).r获取到的是v数据。

在java代码中进行初始化

根据图像宽高创建y、u、v对应的bytebuffer纹理数据;
根据是否镜像显示、旋转角度选择对应的转换矩阵;

public void init(boolean ismirror, int rotatedegree, int framewidth, int frameheight) {
if (this.framewidth == framewidth
    && this.frameheight == frameheight
    && this.rotatedegree == rotatedegree
    && this.ismirror == ismirror) {
  return;
}
datainput = false;
this.framewidth = framewidth;
this.frameheight = frameheight;
this.rotatedegree = rotatedegree;
this.ismirror = ismirror;
yarray = new byte[this.framewidth * this.frameheight];
uarray = new byte[this.framewidth * this.frameheight / 4];
varray = new byte[this.framewidth * this.frameheight / 4];

int yframesize = this.frameheight * this.framewidth;
int uvframesize = yframesize >> 2;
ybuf = bytebuffer.allocatedirect(yframesize);
ybuf.order(byteorder.nativeorder()).position(0);

ubuf = bytebuffer.allocatedirect(uvframesize);
ubuf.order(byteorder.nativeorder()).position(0);

vbuf = bytebuffer.allocatedirect(uvframesize);
vbuf.order(byteorder.nativeorder()).position(0);
// 顶点坐标
squarevertices = bytebuffer
    .allocatedirect(glutil.square_vertices.length * float_size_bytes)
    .order(byteorder.nativeorder())
    .asfloatbuffer();
squarevertices.put(glutil.square_vertices).position(0);
//纹理坐标
if (ismirror) {
  switch (rotatedegree) {
    case 0:
      coordvertice = glutil.mirror_coord_vertices;
      break;
    case 90:
      coordvertice = glutil.rotate_90_mirror_coord_vertices;
      break;
    case 180:
      coordvertice = glutil.rotate_180_mirror_coord_vertices;
      break;
    case 270:
      coordvertice = glutil.rotate_270_mirror_coord_vertices;
      break;
    default:
      break;
  }
} else {
  switch (rotatedegree) {
    case 0:
      coordvertice = glutil.coord_vertices;
      break;
    case 90:
      coordvertice = glutil.rotate_90_coord_vertices;
      break;
    case 180:
      coordvertice = glutil.rotate_180_coord_vertices;
      break;
    case 270:
      coordvertice = glutil.rotate_270_coord_vertices;
      break;
    default:
      break;
  }
}
coordvertices = bytebuffer.allocatedirect(coordvertice.length * float_size_bytes).order(byteorder.nativeorder()).asfloatbuffer();
coordvertices.put(coordvertice).position(0);
}

在surface创建完成时进行renderer初始化

  private void initrenderer() {
  rendererready = false;
  createglprogram();

  //启用纹理
  gles20.glenable(gles20.gl_texture_2d);
  //创建纹理
  createtexture(framewidth, frameheight, gles20.gl_luminance, ytexture);
  createtexture(framewidth / 2, frameheight / 2, gles20.gl_luminance, utexture);
  createtexture(framewidth / 2, frameheight / 2, gles20.gl_luminance, vtexture);

  rendererready = true;
} 

其中createglprogram用于创建opengl program并关联着色器代码中的变量

 private void createglprogram() {
 int programhandlemain = glutil.createshaderprogram();
 if (programhandlemain != -1) {
   // 使用着色器程序
   gles20.gluseprogram(programhandlemain);
   // 获取顶点着色器变量
   int glposition = gles20.glgetattriblocation(programhandlemain, "attr_position");
   int texturecoord = gles20.glgetattriblocation(programhandlemain, "attr_tc");

   // 获取片段着色器变量
   int ysampler = gles20.glgetuniformlocation(programhandlemain, "ysampler");
   int usampler = gles20.glgetuniformlocation(programhandlemain, "usampler");
   int vsampler = gles20.glgetuniformlocation(programhandlemain, "vsampler");

   //给变量赋值
   /**
    * gles20.gl_texture0 和 ysampler 绑定
    * gles20.gl_texture1 和 usampler 绑定
    * gles20.gl_texture2 和 vsampler 绑定
    *
    * 也就是说 gluniform1i的第二个参数代表图层序号
    */
   gles20.gluniform1i(ysampler, 0);
   gles20.gluniform1i(usampler, 1);
   gles20.gluniform1i(vsampler, 2);

   gles20.glenablevertexattribarray(glposition);
   gles20.glenablevertexattribarray(texturecoord);

   /**
    * 设置vertex shader数据
    */
   squarevertices.position(0);
   gles20.glvertexattribpointer(glposition, glutil.count_per_square_vertice, gles20.gl_float, false, 8, squarevertices);
   coordvertices.position(0);
   gles20.glvertexattribpointer(texturecoord, glutil.count_per_coord_vertices, gles20.gl_float, false, 8, coordvertices);
 }
}

其中createtexture用于根据宽高和格式创建纹理

 private void createtexture(int width, int height, int format, int[] textureid) {
   //创建纹理
   gles20.glgentextures(1, textureid, 0);
   //绑定纹理
   gles20.glbindtexture(gles20.gl_texture_2d, textureid[0]);
   /**
    * {@link gles20#gl_texture_wrap_s}代表左右方向的纹理环绕模式
    * {@link gles20#gl_texture_wrap_t}代表上下方向的纹理环绕模式
    *
    * {@link gles20#gl_repeat}:重复
    * {@link gles20#gl_mirrored_repeat}:镜像重复
    * {@link gles20#gl_clamp_to_edge}:忽略边框截取
    *
    * 例如我们使用{@link gles20#gl_repeat}:
    *
    *       squarevertices      coordvertices
    *       -1.0f, -1.0f,      1.0f, 1.0f,
    *       1.0f, -1.0f,       1.0f, 0.0f,     ->     和textureview预览相同
    *       -1.0f, 1.0f,       0.0f, 1.0f,
    *       1.0f, 1.0f        0.0f, 0.0f
    *
    *       squarevertices      coordvertices
    *       -1.0f, -1.0f,      2.0f, 2.0f,
    *       1.0f, -1.0f,       2.0f, 0.0f,     ->     和textureview预览相比,分割成了4 块相同的预览(左下,右下,左上,右上)
    *       -1.0f, 1.0f,       0.0f, 2.0f,
    *       1.0f, 1.0f        0.0f, 0.0f
    */
   gles20.gltexparameteri(gles20.gl_texture_2d, gles20.gl_texture_wrap_s, gles20.gl_repeat);
   gles20.gltexparameteri(gles20.gl_texture_2d, gles20.gl_texture_wrap_t, gles20.gl_repeat);
   /**
    * {@link gles20#gl_texture_min_filter}代表所显示的纹理比加载进来的纹理小时的情况
    * {@link gles20#gl_texture_mag_filter}代表所显示的纹理比加载进来的纹理大时的情况
    *
    * {@link gles20#gl_nearest}:使用纹理中坐标最接近的一个像素的颜色作为需要绘制的像素颜色
    * {@link gles20#gl_linear}:使用纹理中坐标最接近的若干个颜色,通过加权平均算法得到需要绘制的像素颜色
    */
   gles20.gltexparameteri(gles20.gl_texture_2d, gles20.gl_texture_min_filter, gles20.gl_nearest);
   gles20.gltexparameteri(gles20.gl_texture_2d, gles20.gl_texture_mag_filter, gles20.gl_linear);
   gles20.glteximage2d(gles20.gl_texture_2d, 0, format, width, height, 0, format, gles20.gl_unsigned_byte, null);
 }

在java代码中调用绘制

在数据源获取到时裁剪并传入帧数据

@override
 public void onpreview(final byte[] nv21, camera camera) {
 //裁剪指定的图像区域
 imageutil.cropnv21(nv21, this.squarenv21, previewsize.width, previewsize.height, croprect);
 //刷新glsurfaceview
 roundcameraglsurfaceview.refreshframenv21(this.squarenv21);
}

nv21数据裁剪代码

/**
* 裁剪nv21数据
*
* @param originnv21 原始的nv21数据
* @param cropnv21  裁剪结果nv21数据,需要预先分配内存
* @param width   原始数据的宽度
* @param height   原始数据的高度
* @param left    原始数据被裁剪的区域的左边界
* @param top    原始数据被裁剪的区域的上边界
* @param right   原始数据被裁剪的区域的右边界
* @param bottom   原始数据被裁剪的区域的下边界
*/
 public static void cropnv21(byte[] originnv21, byte[] cropnv21, int width, int height, int left, int top, int right, int bottom) {
 int halfwidth = width / 2;
 int cropimagewidth = right - left;
 int cropimageheight = bottom - top;

 //原数据y左上
 int originalylinestart = top * width;
 int targetyindex = 0;

 //原数据uv左上
 int originaluvlinestart = width * height + top * halfwidth;

 //目标数据的uv起始值
 int targetuvindex = cropimagewidth * cropimageheight;

 for (int i = top; i < bottom; i++) {
   system.arraycopy(originnv21, originalylinestart + left, cropnv21, targetyindex, cropimagewidth);
   originalylinestart += width;
   targetyindex += cropimagewidth;
   if ((i & 1) == 0) {
     system.arraycopy(originnv21, originaluvlinestart + left, cropnv21, targetuvindex, cropimagewidth);
     originaluvlinestart += width;
     targetuvindex += cropimagewidth;
   }
 }
}

传给glsurafceview并刷新帧数据

/**
* 传入nv21刷新帧
*
* @param data nv21数据
*/
public void refreshframenv21(byte[] data) {
 if (rendererready) {
   ybuf.clear();
   ubuf.clear();
   vbuf.clear();
   putnv21(data, framewidth, frameheight);
   datainput = true;
   requestrender();
 }
}

其中putnv21用于将nv21中的y、u、v数据分别取出

/**
* 将nv21数据的y、u、v分量取出
*
* @param src  nv21帧数据
* @param width 宽度
* @param height 高度
*/
private void putnv21(byte[] src, int width, int height) {

 int ysize = width * height;
 int framesize = ysize * 3 / 2;

 //取分量y值
 system.arraycopy(src, 0, yarray, 0, ysize);

 int k = 0;

 //取分量uv值
 int index = ysize;
 while (index < framesize) {
   varray[k] = src[index++];
   uarray[k++] = src[index++];
 }
 ybuf.put(yarray).position(0);
 ubuf.put(uarray).position(0);
 vbuf.put(varray).position(0);
}

在执行requestrender后,ondrawframe函数将被回调,在其中进行三个纹理的数据绑定并绘制

   @override
   public void ondrawframe(gl10 gl) {
   // 分别对每个纹理做激活、绑定、设置数据操作
   if (datainput) {
     //y
     gles20.glactivetexture(gles20.gl_texture0);
     gles20.glbindtexture(gles20.gl_texture_2d, ytexture[0]);
     gles20.gltexsubimage2d(gles20.gl_texture_2d,
         0,
         0,
         0,
         framewidth,
         frameheight,
         gles20.gl_luminance,
         gles20.gl_unsigned_byte,
         ybuf);

     //u
     gles20.glactivetexture(gles20.gl_texture1);
     gles20.glbindtexture(gles20.gl_texture_2d, utexture[0]);
     gles20.gltexsubimage2d(gles20.gl_texture_2d,
         0,
         0,
         0,
         framewidth >> 1,
         frameheight >> 1,
         gles20.gl_luminance,
         gles20.gl_unsigned_byte,
         ubuf);

     //v
     gles20.glactivetexture(gles20.gl_texture2);
     gles20.glbindtexture(gles20.gl_texture_2d, vtexture[0]);
     gles20.gltexsubimage2d(gles20.gl_texture_2d,
         0,
         0,
         0,
         framewidth >> 1,
         frameheight >> 1,
         gles20.gl_luminance,
         gles20.gl_unsigned_byte,
         vbuf);
     //在数据绑定完成后进行绘制
     gles20.gldrawarrays(gles20.gl_triangle_strip, 0, 4);
   }
 }

即可完成绘制。

四、加一层边框

有时候需求并不仅仅是圆形预览这么简单,我们可能还要为相机预览加一层边框

边框效果

一样的思路,我们动态地修改边框值,并进行重绘。
边框自定义view中的相关代码如下:

@override
protected void ondraw(canvas canvas) {
  super.ondraw(canvas);
  if (paint == null) {
    paint = new paint();
    paint.setstyle(paint.style.stroke);
    paint.setantialias(true);
    sweepgradient sweepgradient = new sweepgradient(((float) getwidth() / 2), ((float) getheight() / 2),
        new int[]{color.green, color.cyan, color.blue, color.cyan, color.green}, null);
    paint.setshader(sweepgradient);
  }
  drawborder(canvas, 6);
}


private void drawborder(canvas canvas, int rectthickness) {
  if (canvas == null) {
    return;
  }
  paint.setstrokewidth(rectthickness);
  path drawpath = new path();
  drawpath.addroundrect(new rectf(0, 0, getwidth(), getheight()), radius, radius, path.direction.cw);
  canvas.drawpath(drawpath, paint);
}

public void turnround() {
  invalidate();
}

public void setradius(int radius) {
  this.radius = radius;
}

五、完整demo代码:

https://github.com/wangshengyang1996/glcamerademo

使用camera api和camera2 api并选择最接近正方形的预览尺寸
使用camera api并为其动态添加一层父控件,达到正方形预览的效果
使用camera api获取预览数据,使用opengl的方式进行显示最后,给大家推荐一个好用的android免费离线人脸识别的sdk,可以和本文实现技术的完美结合:

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持移动技术网。

如对本文有疑问,请在下面进行留言讨论,广大热心网友会与你互动!! 点击进行留言回复

相关文章:

验证码:
移动技术网