当前位置: 移动技术网 > IT编程>脚本编程>Python > python实现烟花小程序

python实现烟花小程序

2019年03月18日  | 移动技术网IT编程  | 我要评论

蓝猫香侬犬业,家政女皇包书皮,宫心计片尾曲

本文实例为大家分享了python实现烟花小程序的具体代码,供大家参考,具体内容如下

'''
fireworks simulation with tkinter
*self-containing code
*to run: simply type python simple.py in your console
*compatible with both python 2 and python 3
*dependencies: tkinter, pillow (only for background image)
*the design is based on high school physics, with some small twists only for aesthetics purpose
 
import tkinter as tk
#from tkinter import messagebox
#from tkinter import photoimage
from pil import image, imagetk
from time import time, sleep
from random import choice, uniform, randint
from math import sin, cos, radians
# gravity, act as our constant g, you can experiment by changing it
gravity = 0.05
# list of color, can choose randomly or use as a queue (fifo)
colors = ['red', 'blue', 'yellow', 'white', 'green', 'orange', 'purple', 'seagreen','indigo', 'cornflowerblue']
generic class for particles
particles are emitted almost randomly on the sky, forming a round of circle (a star) before falling and getting removed
from canvas
attributes:
  - id: identifier of a particular particle in a star
  - x, y: x,y-coordinate of a star (point of explosion)
  - vx, vy: speed of particle in x, y coordinate
  - total: total number of particle in a star
  - age: how long has the particle last on canvas
  - color: self-explantory
  - cv: canvas
  - lifespan: how long a particle will last on canvas
class part:
  def __init__(self, cv, idx, total, explosion_speed, x=0., y=0., vx = 0., vy = 0., size=2., color = 'red', lifespan = 2, **kwargs):
    self.id = idx
    self.x = x
    self.y = y
    self.initial_speed = explosion_speed
    self.vx = vx
    self.vy = vy
    self.total = total
    self.age = 0
    self.color = color
    self.cv = cv
    self.cid = self.cv.create_oval(
      x - size, y - size, x + size,
      y + size, fill=self.color)
    self.lifespan = lifespan
  def update(self, dt):
    self.age += dt
    # particle expansions
    if self.alive() and self.expand():
      move_x = cos(radians(self.id*360/self.total))*self.initial_speed
      move_y = sin(radians(self.id*360/self.total))*self.initial_speed
      self.cv.move(self.cid, move_x, move_y)
      self.vx = move_x/(float(dt)*1000)
    # falling down in projectile motion
    elif self.alive():
      move_x = cos(radians(self.id*360/self.total))
      # we technically don't need to update x, y because move will do the job
      self.cv.move(self.cid, self.vx + move_x, self.vy+gravity*dt)
      self.vy += gravity*dt
    # remove article if it is over the lifespan
    elif self.cid is not none:
      cv.delete(self.cid)
      self.cid = none
  # define time frame for expansion
  def expand (self):
    return self.age <= 1.2
  # check if particle is still alive in lifespan
  def alive(self):
    return self.age <= self.lifespan
firework simulation loop:
recursively call to repeatedly emit new fireworks on canvas
a list of list (list of stars, each of which is a list of particles)
is created and drawn on canvas at every call, 
via update protocol inside each 'part' object 
def simulate(cv):
  t = time()
  explode_points = []
  wait_time = randint(10,100)
  numb_explode = randint(6,10)
  # create list of list of all particles in all simultaneous explosion
  for point in range(numb_explode):
    objects = []
    x_cordi = randint(50,550)
    y_cordi = randint(50, 150)
    speed = uniform (0.5, 1.5)     
    size = uniform (0.5,3)
    color = choice(colors)
    explosion_speed = uniform(0.2, 1)
    total_particles = randint(10,50)
    for i in range(1,total_particles):
      r = part(cv, idx = i, total = total_particles, explosion_speed = explosion_speed, x = x_cordi, y = y_cordi, 
        vx = speed, vy = speed, color=color, size = size, lifespan = uniform(0.6,1.75))
      objects.append(r)
    explode_points.append(objects)
  total_time = .0
  # keeps undate within a timeframe of 1.8 second
  while total_time < 1.8:
    sleep(0.01)
    tnew = time()
    t, dt = tnew, tnew - t
    for point in explode_points:
      for item in point:
        item.update(dt)
    cv.update()
    total_time += dt
  # recursive call to continue adding new explosion on canvas
  root.after(wait_time, simulate, cv)
def close(*ignore):
  """stops simulation loop and closes the window."""
  global root
  root.quit()
  
if __name__ == '__main__':
  root = tk.tk()
  cv = tk.canvas(root, height=600, width=600)
  # use a nice background image
  image = image.open("./image1.jpg")#背景照片路径自行选择,可以选择酷炫一点的,看起来效果会#更好
  photo = imagetk.photoimage(image)
  cv.create_image(0, 0, image=photo, anchor='nw')
  cv.pack()
  root.protocol("wm_delete_window", close)
  root.after(100, simulate, cv)
  root.mainloop()

注意:这里需要安装tkinter,安装过程:

step1:

>>> import _tkinter # with underscore, and lowercase 't'

step2:

>>> import tkinter # no underscore, uppercase 't' for versions prior to v3.0

>>> import tkinter # no underscore, lowercase 't' for v3.0 and later

step3:

>>> tkinter._test() # note underscore in _test and uppercase 't' for versions prior to v3.0 

>>> tkinter._test() # note underscore in _test and lowercase 't' for v3.0 and later

然后就可以运行了,在代码中有一个背景照片部分,路径可自行选择!我这里就不修改了。

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持移动技术网。

如对本文有疑问,请在下面进行留言讨论,广大热心网友会与你互动!! 点击进行留言回复

相关文章:

验证码:
移动技术网