当前位置: 移动技术网 > 网络运营>服务器>Linux > Linux I/O多路复用详解及实例

Linux I/O多路复用详解及实例

2019年04月28日  | 移动技术网网络运营  | 我要评论

linux i/o多路复用

linux中一切皆文件,不论是我们存储在磁盘上的字符文件,可执行文件还是我们的接入电脑的i/o设备等都被vfs抽象成了文件,比如标准输入设备默认是键盘,我们在操作标准输入设备的时候,其实操作的是默认打开的一个文件描述符是0的文件,而一切软件操作硬件都需要通过os,而os操作一切硬件都需要相应的驱动程序,这个驱动程序里配置了这个硬件的相应配置和使用方法。linux的i/o分为阻塞i/o,非阻塞i/o,i/o多路复用,信号驱动i/o四种。对于i/o设备的驱动,一般都会提供关于阻塞和非阻塞两种配置。我们最常见的i/o设备之一--键盘(标准输入设备)的驱动程序默认是阻塞的。

多路复用就是为了使进程能够从多个阻塞i/o中获得自己想要的数据并继续执行接下来的任务。其主要的思路就是同时监视多个文件描述符,如果有文件描述符的设定状态的被触发,就继续执行进程,如果没有任何一个文件描述符的设定状态被触发,进程进入sleep

多路复用的一个主要用途就是实现"i/o多路复用并发服务器",和多线程并发或者多进程并发相比,这种服务器的系统开销更低,更适合做web服务器。

阻塞i/o

阻塞i/o,就是当进程试图访问这个i/o设备而这个设备并没有准备好的时候,设备的驱动程序会通过内核让这个试图访问的进程进入sleep状态。阻塞i/o的一个好处就是可以大大的节约cpu时间,因为一旦一个进程试图访问一个没有准备好的阻塞i/o,就会进入sleep状态,而进入sleep状态的进程是不在内核的进程调度链表中,直到目标i/o准备好了将其唤醒并加入调度链表,这样就可以节约cpu时间。当然阻塞i/o也有其固有的缺点,如果进程试图访问一个阻塞i/o,但是否访问成功并不对接下来的任务有决定性影响,那么直接使其进入sleep状态显然会延误其任务的完成。
典型的默认阻塞io有标准输入设备,socket设备,管道设备等,当我们使用gets(),scanf(),read()等操作请求这些io时而io并没有数据流入,就会造成进程的sleep。

假设一个进程希望通过三个管道中任意一个中读取数据并显示,伪代码如下

read(pipe_0,buf,sizeof(buf));    //sleep
print buf;
read(pipe_1,buf,sizeof(buf));
print buf;
read(pipe_2,buf,sizeof(buf));
print buf;

由于管道是阻塞i/o,所以如果pipe_0没有数据流入,进程就是在第一个read()处进入sleep状态而即使pipe_1和pipe_2有数据流入也不会被读取。
如果我们使用下述代码重新设置管道的阻塞属性,显然,如果三个管道都没有数据流入,那么进程就无法获得请求的数据而继续执行,倘若这些数据很重要(所以我们才要用阻塞i/o),那结果就会十分的糟糕,改为轮询却又大量的占据cpu时间。

int fl = fcntl(pipe_fd, f_getfl);
fcntl(pipe_fd, f_setfl, fl | o_nonblock);

如何让进程同时监视三个管道,其中一个有数据就继续执行而不会sleep,如果全部没有数据流入再sleep,就是多路复用技术需要解决的问题。

非阻塞i/o

非阻塞i/o就是当一个进程试图访问一个i/o设备的时候,无论是否从中获取了请求的数据都会返回并继续执行接下来的任务。,但非常适合请求是否成功对接下来的任务影响不大的i/o请求。但如果访问一个非阻塞i/o,但这个请求如果失败对进程接下来的任务有致命影响,最粗暴的就是使用while(1){read()}轮询。显然,这种方式会占用大量的cpu时间。

select机制

select是一种非常"古老"的同步i/o接口,但是提供了一种很好的i/o多路复用的思路

模型

fd_set   //创建fd_set对象,将来从中增减需要监视的fd
fd_zero()  //清空fd_set对象
fd_set()  //将一个fd加入fd_set对象中 
select()  //监视fd_set对象中的文件描述符
pselect()  //先设定信号屏蔽,再监视
fd_isset() //测试fd是否属于fd_set对象
fd_clr()  //从fd_set对象中删除fd

note:

select的第一个参数nfds是指集合中的最大的文件描述符+1,因为select会无差别遍历整个文件描述符表直到找到目标,而文件描述符是从0开始的,所以一共是集合中的最大的文件描述符+1次。

上一条导致了这种机制的低效,如果需要监视的文件描述符是0和100那么每一次都会遍历101次

select()每次返回都会修改fd_set,如果要循环select(),需要先对初始的fd_set进行备

例子_i/o多路复用并发服务器

关于server本身的编程模型,参见tcp/ip协议服务器模型和udp/ip协议服务器模型这里仅是使用select实现伪并行的部分模型

#define bufsize 100
#define maxnfd 1024 

int main()
{
  /***********服务器的listenfd已经准本好了**************/
  fd_set readfds;
  fd_set writefds;
  fd_zero(&readfds);
  fd_zero(&writefds);
  fd_set(listenfd, &readfds);

  fd_set temprfds = readfds;
  fd_set tempwfds = writefds;
  int maxfd = listenfd;


  int nready;
  char buf[maxnfd][bufsize] = {0};
  while(1){
    temprfds = readfds;
    tempwfds = writefds;

    nready = select(maxfd+1, &temprfds, &tempwfds, null, null)
    if(fd_isset(listenfd, &temprfds)){     
      //如果监听到的是listenfd就进行accept
      int sockfd = accept(listenfd, (struct sockaddr*)&clientaddr, &len);
      
      //将新accept的scokfd加入监听集合,并保持maxfd为最大fd
      fd_set(sockfd, &readfds);
      maxfd = maxfd>sockfd?maxfd:sockfd;
      
      //如果意见检查了nready个fd,就没有必要再等了,直接下一个循环
      if(--nready==0)
        continue;
    }
    
    int fd = 0;
    //遍历文件描述符表,处理接收到的消息
    for(;fd<=maxfd; fd++){  
      if(fd == listenfd)
        continue;

      if(fd_isset(fd, &temprfds)){
        int ret = read(fd, buf[fd], sizeof buf[0]);
        if(0 == ret){  //客户端链接已经断开
          close(fd);
          fd_clr(fd, &readfds);
          if(maxfd==fd) 
            --maxfd;
          continue;
        }
        //将fd加入监听可写的集合
        fd_set(fd, &writefds); 
      }
      //找到了接收消息的socket的fd,接下来将其加入到监视写的fd_set中
      //将在下一次while()循环开始监视
      if(fd_isset(fd, &tempwfds)){
        int ret = write(fd, buf[fd], sizeof buf[0]);
        printf("ret %d: %d\n", fd, ret);
        fd_clr(fd, &writefds);
      }
    }
  }
  close(listenfd);
}

poll机制

poll是system v提出的一种基于select的改良机制,其针对select的诸多明显的缺陷进行了重新设计,包括只遍历被触发个数个文件描述符,不需要备份fd_set等等

模型

struct pollfd  fds   //创建一个pollfd类型的数组
fds[0].fd        //向fds[0]中放入需要监视的fd
fds[0].events      //向fds[0]中放入需要监视的fd的触发事件
  pollin       //i/o有输入
  pollpri       //有紧急数据需要读取
  pollout       //i/o可写
  pollrdhup      //流式套接字连接断开或套接字处于半关闭状态
  pollerr       //错误条件(仅针对输出)
  pollhup       //挂起(仅针对输出)
  pollnval      //无效的请求:fd没有被打开(仅针对输出)

例子_i/o多路复用并发服务器

/* ... */

int main()
{
  /* ... */
  struct pollfd myfds[maxnfd] = {0};
  myfds[0].fd = listenfd;
  myfds[0].events = pollin;
  int maxnum = 1;
  
  int nready;
  //准备二维数组buf,每个fd使用buf的一行,数据干扰
  char buf[maxnfd][bufsize] = {0};
  while(1){
    //poll直接返回event被触发的fd的个数
    nready = poll(myfds, maxnum, -1)
    int i = 0;
    for(;i<maxnum; i++){
      //poll通过将相应的二进制位置一来表示已经设置
      //如果下面的条件成立,表示revent[i]里的pollin位已经是1了
      if(myfds[i].revents & pollin){
        if(myfds[i].fd == listenfd){
          int sockfd = accept(listenfd, (struct sockaddr*)&clientaddr, &len);
          //将新accept的scokfd加入监听集合
          myfds[maxnum].fd = sockfd;
          myfds[maxnum].events = pollin;
          maxnum++;
          
          //如果意见检查了nready个fd,就直接下一个循环
          if(--nready==0)
            continue;
        }
        else{
          int ret = read(myfds[i].fd, buf[myfds[i].fd], sizeof buf[0]);
          if(0 == ret){  //如果连接断开了
            close(myfds[i].fd);
            
             //初始化将文件描述符表所有的文件描述符标记为-1
             //close的文件描述符也标记为-1
             //打开新的描述符时从表中搜索第一个-1
             //open()就是这样实现始终使用最小的fd
             //这里为了演示并没有使用这种机制
             myfds[i].fd = -1; 
            continue;
          }
          myfds[i].events = pollout;
        }
      }
      else if(myfds[i].revents & pollout){
        int ret = write(myfds[i].fd, buf[myfds[i].fd], sizeof buf[0]);
        myfds[i].events = pollin;
      }
    }
  }
  close(listenfd);
}

epoll

epoll在poll基础上实现的更为健壮的接口,也是现在主流的web服务器使用的多路复用技术,epoll一大特色就是支持epollet(边沿触发)和epolllt (水平触发),前者表示如果读取之后缓冲区还有数据,那么只要读取结束,剩余的数据也会丢弃,而后者表示里面的数据不会丢弃,下次读的时候还在,默认是epolllt

模型

epoll_create()     //创建epoll对象
struct epoll_event   //准备事件结构体和事件结构体数组
  event.events
  event.data.fd ...
epoll_ctl()       //配置epoll对象
epoll_wait()      //监控epoll对象中的fd及其相应的event

例子_i/o多路复用并发服务器

/* ... */

int main()
{
  /* ... */
  /* 创建epoll对象 */
  int epoll_fd = epoll_create(1024);
  
  //准备一个事件结构体
  struct epoll_event event = {0};
  event.events = epollin;
  event.data.fd = listenfd;  //data是一个共用体,除了fd还可以返回其他数据
  
  //ctl是监控listenfd是否有event被触发
  //如果发生了就把event通过wait带出。
  //所以,如果event里不标明fd,我们将来获取就不知道哪个fd
  epoll_ctl(epoll_fd, epoll_ctl_add, listenfd, &event);
  
  struct epoll_event revents[maxnfd] = {0};
  int nready;
  char buf[maxnfd][bufsize] = {0};
  while(1){
    //wait返回等待的event发生的数目
    //并把相应的event放到event类型的数组中
    nready = epoll_wait(epoll_fd, revents, maxnfd, -1)
    int i = 0;
    for(;i<nready; i++){
      //wait通过在events中设置相应的位来表示相应事件的发生
      //如果输入可用,那么下面的这个结果应该为真
      if(revents[i].events & epollin){
        //如果是listenfd有数据输入
        if(revents[i].data.fd == listenfd){
          int sockfd = accept(listenfd, (struct sockaddr*)&clientaddr, &len);
          struct epoll_event event = {0};
          event.events = epollin;
          event.data.fd = sockfd;
          epoll_ctl(epoll_fd, epoll_ctl_add, sockfd, &event);
        }
        else{
          int ret = read(revents[i].data.fd, buf[revents[i].data.fd], sizeof buf[0]);
          if(0 == ret){
            close(revents[i].data.fd);
            epoll_ctl(epoll_fd, epoll_ctl_del, revents[i].data.fd, &revents[i]);
          }
          
          revents[i].events = epollout;
          epoll_ctl(epoll_fd, epoll_ctl_mod, revents[i].data.fd, &revents[i]);
        }
      }
      else if(revents[i].events & epollout){
        int ret = write(revents[i].data.fd, buf[revents[i].data.fd], sizeof buf[0]);
        revents[i].events = epollin;
        epoll_ctl(epoll_fd, epoll_ctl_mod, revents[i].data.fd, &revents[i]);
      }
    }
  }
  close(listenfd);
}



感谢阅读,希望能帮助到大家,谢谢大家对本站的支持!

如对本文有疑问, 点击进行留言回复!!

相关文章:

验证码:
移动技术网