当前位置: 移动技术网 > IT编程>开发语言>Java > Java 多线程实例讲解(一)

Java 多线程实例讲解(一)

2019年07月22日  | 移动技术网IT编程  | 我要评论

java多线程(一)

多线程作为java中很重要的一个知识点,在此还是有必要总结一下的。

一.线程的生命周期及五种基本状态

关于java中线程的生命周期,首先看一下下面这张较为经典的图:

上图中基本上囊括了java中多线程各重要知识点。掌握了上图中的各知识点,java中的多线程也就基本上掌握了。主要包括:

java线程具有五中基本状态

新建状态(new):当线程对象对创建后,即进入了新建状态,如:thread t = new mythread();

就绪状态(runnable):当调用线程对象的start()方法(t.start();),线程即进入就绪状态。处于就绪状态的线程,只是说明此线程已经做好了准备,随时等待cpu调度执行,并不是说执行了t.start()此线程立即就会执行;

运行状态(running):当cpu开始调度处于就绪状态的线程时,此时线程才得以真正执行,即进入到运行状态。注:就     绪状态是进入到运行状态的唯一入口,也就是说,线程要想进入运行状态执行,首先必须处于就绪状态中;

阻塞状态(blocked):处于运行状态中的线程由于某种原因,暂时放弃对cpu的使用权,停止执行,此时进入阻塞状态,直到其进入到就绪状态,才 有机会再次被cpu调用以进入到运行状态。根据阻塞产生的原因不同,阻塞状态又可以分为三种:

1.等待阻塞:运行状态中的线程执行wait()方法,使本线程进入到等待阻塞状态;

2.同步阻塞 -- 线程在获取synchronized同步锁失败(因为锁被其它线程所占用),它会进入同步阻塞状态;

3.其他阻塞 -- 通过调用线程的sleep()或join()或发出了i/o请求时,线程会进入到阻塞状态。当sleep()状态超时、join()等待线程终止或者超时、或者i/o处理完毕时,线程重新转入就绪状态。

死亡状态(dead):线程执行完了或者因异常退出了run()方法,该线程结束生命周期。

二. java多线程的创建及启动

java中线程的创建常见有如三种基本形式

1.继承thread类,重写该类的run()方法。

class mythread extends thread {
 
 private int i = 0;

 @override
 public void run() {
 for (i = 0; i < 100; i++) {
  system.out.println(thread.currentthread().getname() + " " + i);
 }
 }
}
public class threadtest {

 public static void main(string[] args) {
 for (int i = 0; i < 100; i++) {
  system.out.println(thread.currentthread().getname() + " " + i);
  if (i == 30) {
  thread mythread1 = new mythread(); // 创建一个新的线程 mythread1 此线程进入新建状态
  thread mythread2 = new mythread(); // 创建一个新的线程 mythread2 此线程进入新建状态
  mythread1.start();   // 调用start()方法使得线程进入就绪状态
  mythread2.start();   // 调用start()方法使得线程进入就绪状态
  }
 }
 }
}

 如上所示,继承thread类,通过重写run()方法定义了一个新的线程类mythread,其中run()方法的方法体代表了线程需要完成的任务,称之为线程执行体。当创建此线程类对象时一个新的线程得以创建,并进入到线程新建状态。通过调用线程对象引用的start()方法,使得该线程进入到就绪状态,此时此线程并不一定会马上得以执行,这取决于cpu调度时机。

2.实现runnable接口,并重写该接口的run()方法,该run()方法同样是线程执行体,创建runnable实现类的实例,并以此实例作为thread类的target来创建thread对象,该thread对象才是真正的线程对象。

class myrunnable implements runnable {
 private int i = 0;

 @override
 public void run() {
 for (i = 0; i < 100; i++) {
  system.out.println(thread.currentthread().getname() + " " + i);
 }
 }
}
public class threadtest {

 public static void main(string[] args) {
 for (int i = 0; i < 100; i++) {
  system.out.println(thread.currentthread().getname() + " " + i);
  if (i == 30) {
  runnable myrunnable = new myrunnable(); // 创建一个runnable实现类的对象
  thread thread1 = new thread(myrunnable); // 将myrunnable作为thread target创建新的线程
  thread thread2 = new thread(myrunnable);
  thread1.start(); // 调用start()方法使得线程进入就绪状态
  thread2.start();
  }
 }
 }
}

相信以上两种创建新线程的方式大家都很熟悉了,那么thread和runnable之间到底是什么关系呢?我们首先来看一下下面这个例子。

public class threadtest {

 public static void main(string[] args) {
 for (int i = 0; i < 100; i++) {
  system.out.println(thread.currentthread().getname() + " " + i);
  if (i == 30) {
  runnable myrunnable = new myrunnable();
  thread thread = new mythread(myrunnable);
  thread.start();
  }
 }
 }
}

class myrunnable implements runnable {
 private int i = 0;

 @override
 public void run() {
 system.out.println("in myrunnable run");
 for (i = 0; i < 100; i++) {
  system.out.println(thread.currentthread().getname() + " " + i);
 }
 }
}

class mythread extends thread {

 private int i = 0;
 
 public mythread(runnable runnable){
 super(runnable);
 }

 @override
 public void run() {
 system.out.println("in mythread run");
 for (i = 0; i < 100; i++) {
  system.out.println(thread.currentthread().getname() + " " + i);
 }
 }
}

同样的,与实现runnable接口创建线程方式相似,不同的地方在于

1 thread thread = new mythread(myrunnable);

那么这种方式可以顺利创建出一个新的线程么?答案是肯定的。至于此时的线程执行体到底是myrunnable接口中的run()方法还是mythread类中的run()方法呢?通过输出我们知道线程执行体是mythread类中的run()方法。其实原因很简单,因为thread类本身也是实现了runnable接口,而run()方法最先是在runnable接口中定义的方法。

 public interface runnable {
 
 public abstract void run();
 
 }

我们看一下thread类中对runnable接口中run()方法的实现:

@override
 public void run() {
 if (target != null) {
  target.run();
 }
 }

也就是说,当执行到thread类中的run()方法时,会首先判断target是否存在,存在则执行target中的run()方法,也就是实现了runnable接口并重写了run()方法的类中的run()方法。但是上述给到的列子中,由于多态的存在,根本就没有执行到thread类中的run()方法,而是直接先执行了运行时类型即mythread类中的run()方法。

3.使用callable和future接口创建线程。具体是创建callable接口的实现类,并实现clall()方法。并使用futuretask类来包装callable实现类的对象,且以此futuretask对象作为thread对象的target来创建线程。

 看着好像有点复杂,直接来看一个例子就清晰了。

public class threadtest {

 public static void main(string[] args) {

 callable<integer> mycallable = new mycallable(); // 创建mycallable对象
 futuretask<integer> ft = new futuretask<integer>(mycallable); //使用futuretask来包装mycallable对象

 for (int i = 0; i < 100; i++) {
  system.out.println(thread.currentthread().getname() + " " + i);
  if (i == 30) {
  thread thread = new thread(ft); //futuretask对象作为thread对象的target创建新的线程
  thread.start();   //线程进入到就绪状态
  }
 }

 system.out.println("主线程for循环执行完毕..");
 
 try {
  int sum = ft.get();  //取得新创建的新线程中的call()方法返回的结果
  system.out.println("sum = " + sum);
 } catch (interruptedexception e) {
  e.printstacktrace();
 } catch (executionexception e) {
  e.printstacktrace();
 }

 }
}


class mycallable implements callable<integer> {
 private int i = 0;

 // 与run()方法不同的是,call()方法具有返回值
 @override
 public integer call() {
 int sum = 0;
 for (; i < 100; i++) {
  system.out.println(thread.currentthread().getname() + " " + i);
  sum += i;
 }
 return sum;
 }

}

首先,我们发现,在实现callable接口中,此时不再是run()方法了,而是call()方法,此call()方法作为线程执行体,同时还具有返回值!在创建新的线程时,是通过futuretask来包装mycallable对象,同时作为了thread对象的target。那么看下futuretask类的定义: 

public class futuretask<v> implements runnablefuture<v> {
 
 //....
 
 }
public interface runnablefuture<v> extends runnable, future<v> {
 
 void run();
 
 }

于是,我们发现futuretask类实际上是同时实现了runnable和future接口,由此才使得其具有future和runnable双重特性。通过runnable特性,可以作为thread对象的target,而future特性,使得其可以取得新创建线程中的call()方法的返回值。

执行下此程序,我们发现sum = 4950永远都是最后输出的。而“主线程for循环执行完毕..”则很可能是在子线程循环中间输出。由cpu的线程调度机制,我们知道,“主线程for循环执行完毕..”的输出时机是没有任何问题的,那么为什么sum =4950会永远最后输出呢?

原因在于通过ft.get()方法获取子线程call()方法的返回值时,当子线程此方法还未执行完毕,ft.get()方法会一直阻塞,直到call()方法执行完毕才能取到返回值。

上述主要讲解了三种常见的线程创建方式,对于线程的启动而言,都是调用线程对象的start()方法,需要特别注意的是:不能对同一线程对象两次调用start()方法。

三. java多线程的就绪、运行和死亡状态

就绪状态转换为运行状态:当此线程得到处理器资源;

运行状态转换为就绪状态:当此线程主动调用yield()方法或在运行过程中失去处理器资源。

运行状态转换为死亡状态:当此线程线程执行体执行完毕或发生了异常。

此处需要特别注意的是:当调用线程的yield()方法时,线程从运行状态转换为就绪状态,但接下来cpu调度就绪状态中的哪个线程具有一定的随机性,因此,可能会出现a线程调用了yield()方法后,接下来cpu仍然调度了a线程的情况。

由于实际的业务需要,常常会遇到需要在特定时机终止某一线程的运行,使其进入到死亡状态。目前最通用的做法是设置一boolean型的变量,当条件满足时,使线程执行体快速执行完毕。如:

public class threadtest {

 public static void main(string[] args) {

 myrunnable myrunnable = new myrunnable();
 thread thread = new thread(myrunnable);
 
 for (int i = 0; i < 100; i++) {
  system.out.println(thread.currentthread().getname() + " " + i);
  if (i == 30) {
  thread.start();
  }
  if(i == 40){
  myrunnable.stopthread();
  }
 }
 }
}

class myrunnable implements runnable {

 private boolean stop;

 @override
 public void run() {
 for (int i = 0; i < 100 && !stop; i++) {
  system.out.println(thread.currentthread().getname() + " " + i);
 }
 }

 public void stopthread() {
 this.stop = true;
 }

}

后续继续整理相关文章,谢谢大家对本站的支持!

 系列文章:

j
java 多线程实例详解(二)
java 多线程实例详解(三)

如对本文有疑问, 点击进行留言回复!!

相关文章:

验证码:
移动技术网