当前位置: 移动技术网 > IT编程>开发语言>c# > 一步一步剖析Dictionary实现原理

一步一步剖析Dictionary实现原理

2019年10月11日  | 移动技术网IT编程  | 我要评论

目录

  • 关键的字段和entry结构
  • 添加键值(add)
  • 取键值(find)
  • 移除键值(remove)
  • 再插入键值

  本文是对c#中dictionary内部实现原理进行简单的剖析。如有表述错误,欢迎指正。

  主要对照源码来解析,目前对照源码的版本是.net framwork 4.8,

1. 关键的字段和entry结构

        struct entry
        {
            public int hashcode;    // key的hashcode & 0x7fffffff
            public int next;            // 指向链表下一个元素的地址(实际就是entries的索引),最后一个元素为-1
            public tkey key;
            public tvalue value;
        }
        entry[] entries;        //存放键值
        int[] buckets;          //存储entries最新元素的索引,其存储位置由取模结果决定。例:假设键值存储在entries的第1元素的位置上,且hashcode和长度的取模结果为2,那么buckets[2] = 1
        int count = 0;         //已存储键值的个数
        int version;             //记录版本,防止迭代过程中集合被更改
        iequalitycomparer<tkey> _comparer;    
        int freelist;             //entries中最新空元素的索引
        int freecount;         //entries中空元素的个数

2. 添加键值(add)

        public void add(tkey key, tvalue value) {
            insert(key, value, true);
        }


        private void insert(tkey key, tvalue value, bool add) {
        
            if( key == null ) {
                throwhelper.throwargumentnullexception(exceptionargument.key);
            }
            if (buckets == null) initialize(0);
            int hashcode = comparer.gethashcode(key) & 0x7fffffff;
            //取模
            int targetbucket = hashcode % buckets.length;
#if feature_randomized_string_hashing
            int collisioncount = 0;
#endif
            for (int i = buckets[targetbucket]; i >= 0; i = entries[i].next) {
                if (entries[i].hashcode == hashcode &&  comparer.equals(entries[i].key, key)) {
                    if (add) {
                         throwhelper.throwargumentexception(exceptionresource.argument_addingduplicate);
                    }
                    //对于已存在的key重新赋值
                    entries[i].value = value;
                    version++;
                    return;
                }
#if feature_randomized_string_hashing
                collisioncount++;
#endif
            }
            int index;
            if (freecount > 0) {
                //存在entries中存在空元素
                index = freelist;
                freelist = entries[index].next;
                freecount--;
            }
            else {
                if (count == entries.length)
                {
                    //扩容:取大于count * 2的最小素数作为entries和bucket的新容量(即数组长度.length)
                    resize();
                    targetbucket = hashcode % buckets.length;
                }
                index = count;
                count++;
            }
            entries[index].hashcode = hashcode;
            entries[index].next = buckets[targetbucket];
            entries[index].key = key;
            entries[index].value = value;
            //存取链表的头元素的索引(即entries最后存入的元素的在enties中的索引)
            //便于取key的时每次从链表的头元素开始遍历,详细见findentry(tkey key)函数
            buckets[targetbucket] = index;
            version++;
#if feature_randomized_string_hashing
#if feature_coreclr
            // in case we hit the collision threshold we'll need to switch to the  comparer which is using randomized string hashing
            // in this case will be equalitycomparer<string>.default.
            // note, randomized string hashing is turned on by default on coreclr so  equalitycomparer<string>.default will
            // be using randomized string hashing
            if (collisioncount > hashhelpers.hashcollisionthreshold && comparer ==  nonrandomizedstringequalitycomparer.default)
            {
                comparer = (iequalitycomparer<tkey>)  equalitycomparer<string>.default;
                resize(entries.length, true);
            }
#else
            if(collisioncount > hashhelpers.hashcollisionthreshold &&  hashhelpers.iswellknownequalitycomparer(comparer))
            {
                //如果碰撞次数(单链表长度)大于设置的最大碰撞阈值,需要扩容
                comparer = (iequalitycomparer<tkey>)  hashhelpers.getrandomizedequalitycomparer(comparer);
                resize(entries.length, true);
            }
#endif // feature_coreclr
#endif
        }

******************************************************************************************************************************************
        static void foo()
        {
            var dicdata = new dictionary<int, int>();
      //添加键值
            new list<int> { 1, 2, 4 }.foreach(item => add(item, dicdata));
            new list<int> { 22, 29, 36, 20 }.foreach(item => add(item, dicdata));
        }
        static void add(int key, dictionary<int, int> dicdata)
        {
            dicdata.add(key, key);
        }

2.1 数组entries和buckets初始化

      private void initialize(int capacity) {
            //取大于capacity的最小质数(素数)
            int size = hashhelpers.getprime(capacity);
            buckets = new int[size];
            for (int i = 0; i < buckets.length; i++) buckets[i] = -1;
            entries = new entry[size];
            freelist = -1;
        }
    ****************************************************
    internal static class hashhelpers
    {
        ......
        public const int hashcollisionthreshold = 100;       //碰撞阈值
        ......
        public static readonly int[] primes = {
            3, 7, 11, 17, 23, 29, 37, 47, 59, 71, 89, 107, 131, 163, 197, 239, 293,  353, 431, 521, 631, 761, 919,
            1103, 1327, 1597, 1931, 2333, 2801, 3371, 4049, 4861, 5839, 7013, 8419,  10103, 12143, 14591,
            17519, 21023, 25229, 30293, 36353, 43627, 52361, 62851, 75431, 90523,  108631, 130363, 156437,
            187751, 225307, 270371, 324449, 389357, 467237, 560689, 672827, 807403,  968897, 1162687, 1395263,
            1674319, 2009191, 2411033, 2893249, 3471899, 4166287, 4999559, 5999471,  7199369};            //质数(素数)组
        ......

        public static int getprime(int min)
        {
            if (min < 0)
                throw new  argumentexception(environment.getresourcestring("arg_htcapacityoverflow"));
            contract.endcontractblock();
            //查找primes是否有满足的质数(素数)
            for (int i = 0; i < primes.length; i++)
            {
                int prime = primes[i];
                if (prime >= min) return prime;
            }
            //outside of our predefined table.
            //compute the hard way.
            //primes没有查找到满足的质数(素数),自行计算
            for (int i = (min | 1); i < int32.maxvalue;i+=2)
            {
                if (isprime(i) && ((i - 1) % hashtable.hashprime != 0))
                    return i;
            }
            return min;
        }
    }

 

 2.2 添加键值{1,1},则

    hashcode = 1;
  targetbucket = hascode % buckets.length;         //targetbucket = 1
    next = buckets[targetbucket];                               //next = -1
    buckets[targetbucket] = index;                             //buckets[1] = 0 

 2.3 添加键值{2,2},则

    hashcode = 2;
  targetbucket = hascode % buckets.length;         //targetbucket = 2
    next = buckets[targetbucket];                               //next = -1
    buckets[targetbucket] = index;                              //buckets[2] = 1

 2.4 添加键值{4,4},则

    hashcode = 4;
    targetbucket = hascode % buckets.length;         //targetbucket = 1
    next = buckets[targetbucket];                               //next = 0
    buckets[targetbucket] = index;                              //buckets[1] = 2

接下来将entries数组以单链表的形式呈现(即enteries数组横向);

 2.5 在继续添加键值之前,需要扩容操作,因为entries数组长度为3且都已有元素。扩容后需要对buckets和entries每个元素的next需要重新赋值;

       private void resize() {
            //扩容的大小:取大于(当前容量*2)的最小素数
            //例:
            resize(hashhelpers.expandprime(count), false);
        }
       private void resize(int newsize, bool forcenewhashcodes) {
            contract.assert(newsize >= entries.length);
            //实例化buckets,并将每个元素置为-1
            int[] newbuckets = new int[newsize];
            for (int i = 0; i < newbuckets.length; i++) newbuckets[i] = -1;
            entry[] newentries = new entry[newsize];
            array.copy(entries, 0, newentries, 0, count);
            //如果是hash碰撞扩容,使用新hashcode函数重新计算hash值
            if(forcenewhashcodes) {
                for (int i = 0; i < count; i++) {
                    if(newentries[i].hashcode != -1) {
                        newentries[i].hashcode =  (comparer.gethashcode(newentries[i].key) & 0x7fffffff);
                    }
                }
            }
            //重建单链表
            for (int i = 0; i < count; i++) {
                if (newentries[i].hashcode >= 0) {
                    //取模重新设置next值和buckets
                    int bucket = newentries[i].hashcode % newsize;
                    newentries[i].next = newbuckets[bucket];
                    newbuckets[bucket] = i;
                }
            }
            buckets = newbuckets;
            entries = newentries;
        }
*******************************************************************
    internal static class hashhelpers
    {
        ......
        public static readonly int[] primes = {
            3, 7, 11, 17, 23, 29, 37, 47, 59, 71, 89, 107, 131, 163, 197, 239, 293,  353, 431, 521, 631, 761, 919,
            1103, 1327, 1597, 1931, 2333, 2801, 3371, 4049, 4861, 5839, 7013, 8419,  10103, 12143, 14591,
            17519, 21023, 25229, 30293, 36353, 43627, 52361, 62851, 75431, 90523,  108631, 130363, 156437,
            187751, 225307, 270371, 324449, 389357, 467237, 560689, 672827, 807403,  968897, 1162687, 1395263,
            1674319, 2009191, 2411033, 2893249, 3471899, 4166287, 4999559, 5999471,  7199369};            //质数(素数)组
        
        ......
        // this is the maximum prime smaller than array.maxarraylength
        public const int maxprimearraylength = 0x7feffffd;         //数组最大长度的最小质数

        public static int expandprime(int oldsize)
        {    
            //翻倍
            int newsize = 2 * oldsize;
            // allow the hashtables to grow to maximum possible size (~2g elements)  before encoutering capacity overflow.
            // note that this check works even when _items.length overflowed thanks  to the (uint) cast
            //翻倍的大小不能超过【数组最大长度的最小质数】
            if ((uint)newsize > maxprimearraylength && maxprimearraylength >  oldsize)
            {
                contract.assert( maxprimearraylength ==  getprime(maxprimearraylength), "invalid maxprimearraylength");
                return maxprimearraylength;
            }
            //取最小的质数(素数)
            return getprime(newsize);
        }

        public static int getprime(int min)
        {
            if (min < 0)
                throw new  argumentexception(environment.getresourcestring("arg_htcapacityoverflow"));
            contract.endcontractblock();
            //查找primes是否有满足的质数(素数)
            for (int i = 0; i < primes.length; i++)
            {
                int prime = primes[i];
                if (prime >= min) return prime;
            }
            //outside of our predefined table.
            //compute the hard way.
            //primes没有查找到满足的质数(素数),自行计算
            for (int i = (min | 1); i < int32.maxvalue;i+=2)
            {
                if (isprime(i) && ((i - 1) % hashtable.hashprime != 0))
                    return i;
            }
            return min;
        }
    }

 2.6 继续添加键值{22,22},{29,29},{36,36},{40,40},添加完后其内部存储结果如下

 3. 取键值(find)

     public tvalue this[tkey key] {
            get {
                //取key对应值在entries的索引
                int i = findentry(key);
                if (i >= 0) return entries[i].value;
                throwhelper.throwkeynotfoundexception();
                return default(tvalue);
            }
            set {
                //更新key对应的值
                insert(key, value, false);
            }
        }

    private int findentry(tkey key) {
            if( key == null) {
                throwhelper.throwargumentnullexception(exceptionargument.key);
            }
            if (buckets != null) {
                int hashcode = comparer.gethashcode(key) & 0x7fffffff;
                //遍历单链表
                for (int i = buckets[hashcode % buckets.length]; i >= 0; i =  entries[i].next) {
                    if (entries[i].hashcode == hashcode &&  comparer.equals(entries[i].key, key)) return i;
                }
            }
            return -1;
        }
*********************************************************************************************
        static void foo()
        {
            ......
            //取key=22
            var val =dicdata[22];
}

简化取key对应值的代码

    var hashcode =comparer.gethashcode(key) & 0x7fffffff;   // 22
    var targetbuget = hashcode % buckets.length;            //取模运算 1  
    var i = bucket[targetbuget];                            //链表头元素的索引 bucket[1] = 5
    //遍历单链表
    for (; i >= 0; i =  entries[i].next) {
        if (entries[i].hashcode == hashcode &&  comparer.equals(entries[i].key, key)) return i;
    }

 4. 移除键值(remove)

        public bool remove(tkey key) {
            if(key == null) {
                throwhelper.throwargumentnullexception(exceptionargument.key);
            }
            if (buckets != null) {
                int hashcode = comparer.gethashcode(key) & 0x7fffffff;
                int bucket = hashcode % buckets.length;
                int last = -1;
                //其原理先取出键值,然后记录entries空闲的索引(freelist)和空闲个数(freecount)
                for (int i = buckets[bucket]; i >= 0; last = i, i = entries[i].next)  {
                    if (entries[i].hashcode == hashcode &&  comparer.equals(entries[i].key, key)) {
                        if (last < 0) {
                            buckets[bucket] = entries[i].next;
                        }
                        else {
                            entries[last].next = entries[i].next;
                        }
                        entries[i].hashcode = -1;
                        //建立空闲链表
                        entries[i].next = freelist;
                        entries[i].key = default(tkey);
                        entries[i].value = default(tvalue);
                        //保存entryies中空元素的索引
                        //便于插入新键值时,放在当前索引的位置,减少entryies空间上的浪费
                        freelist = i;
                        //空元素的个数加1
                        freecount++;
                        version++;
                        return true;
                    }
                }
            }
            return false;
        }
*******************************************************************
        static void foo()
        {
            ......
            //移除
            new list<int> { 22, 29 }.foreach(item => dicdata.remove(item));
        } 

4.1 移除key=22后,freelist = 3, freecount = 1,

 4.2 移除key=36后,freelist = 5, freecount = 2, 

 5. 再插入键值

如上图,当移除掉{36,36}后,会发现又诞生一个含有两个元素的“新链表”(上图灰色框)。这个作用就是为了插入新键值时,按照“新链表”记录的索引顺序插入到entries数组中。
例:添加键值{22,22},{25,25},此时freelist = 5,freecount = 2;
  1. 给entries[5]赋值,freelist = 3, freecount = 1;
  2. 给entries[3]赋值,freelist = -1, freecount = 0;

 

 希望此文能够让你对于dictionary内部实现有所认识。

如对本文有疑问, 点击进行留言回复!!

相关文章:

验证码:
移动技术网