当前位置: 移动技术网 > IT编程>开发语言>C/C++ > i的二次幂求和

i的二次幂求和

2019年03月21日  | 移动技术网IT编程  | 我要评论

性都花花世界,博爱县人民政府网,优德娱乐场

\(i^2\)求和

老祖宗告诉我们\(\sum_{i=1}^n i^2 = \frac{n(n+1)(2n+1)}{6}\)

但是这玩意儿是怎么出来的呢?感觉网上用立方差证明的思路太low了,今天偶然间在miskcoo大佬的博客中看到了一种脑洞清奇通俗易懂的证明方法

我们要求的是\(s_n = \sum_{i=1}^n i^2\),现在我们对\(c_n = \sum_{i=1}^n i^3\)来进行"扰动"。

首先列一个恒等式

\[\sum_{i=1}^{n+1} i^3 = c_n + (n+1)^3\]

这里有个骚操作是把前面的转化一下

\[\sum_{i=0}^n (i+1)^3 = c_n + (n+1)^3\]

然后就可以推柿子啦。

\[ \begin{aligned} \sum_{i=0}^n i^3 + 3i^2 + 3i + 1 &= c_n + (n+1)^3\\ c_n + 3s_n + 3\frac{n(n+1)}{2} + (n+1)&= c_n + (n+1)^3\\ \end{aligned} \]

\[ \begin{aligned} \rightarrow s_n &= \frac{2(n+1)^3 - 3n(n+1)-2(n+1)}{6}\\ &=\frac{n(2n + 1)(n+1)}{6} \end{aligned} \]

同时这个方法具有非常强的扩展性,我们也可以推导出\(i^k\)的公式,但是计算起来的复杂度却是\(k^2\)的,感觉还是拉格朗日插值\(k \log k\)好用一些

参考资料

如对本文有疑问,请在下面进行留言讨论,广大热心网友会与你互动!! 点击进行留言回复

相关文章:

验证码:
移动技术网